Zhu Jun-Rong, Chen Yi-Han, Li Zhuang-Yan, Chen Qing, Xiao Fang-Xing
College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China.
Inorg Chem. 2023 Nov 13;62(45):18649-18659. doi: 10.1021/acs.inorgchem.3c02951. Epub 2023 Oct 30.
Transition-metal chalcogenide quantum dots (TMC QDs) show great promise in artificial photosynthesis for excellent light-harvesting capability. Nonetheless, TMC QDs have limitations of ultrafast charge recombination rate, sluggish carrier migration kinetics, and generic photocorrosion, retarding their widespread applications. To solve these obstacles, herein, we demonstrate the stimulation of charge migration over TMC QDs with the aid of nonconjugated insulating polymer and graphene (GR) for a versatile photoredox selective organic transformation. To this end, an ultrathin insulating polymer layer, i.e., poly(allylamine hydrochloride) (PAH), grafted on the GR framework, is electrostatically intercalated at the interface of TMCs QDs and the GR framework via a self-assembly for constructing TMC QDs/PAH/GR three-dimensional spatially multilayered heterostructures. In this well-defined nanoarchitecture, TMC QDs function as a light-harvesting antenna, GR as a terminal electron reservoir, and PAH as an intermediate interfacial charge relay mediator. We ascertain that the ultrathin PAH interim layer unexpectedly fosters the photoelectron migration from TMCs QDs to the GR framework in a tunable fashion, boosting the charge separation of TMCs QDs and resulting in significantly improved photoactivities toward anaerobic reduction of aromatic nitro compounds to amino derivatives and oxidation of alcohols to aldehydes under visible light. Photoredox catalysis mechanisms of such TMC QDs/PAH/GR photosystems are elucidated, and the active species in these photoredox organic conversion reactions are comprehensively determined. Our work would open new frontiers to finely modulate the charge transport of TMCs QDs via nonconjugated insulating polymers for solar energy conversion.
过渡金属硫族化物量子点(TMC QDs)因其出色的光捕获能力在人工光合作用中展现出巨大潜力。然而,TMC QDs存在超快电荷复合率、缓慢的载流子迁移动力学以及普遍的光腐蚀等局限性,阻碍了它们的广泛应用。为了解决这些障碍,在此我们展示了借助非共轭绝缘聚合物和石墨烯(GR)来促进TMC QDs上的电荷迁移,以实现通用的光氧化还原选择性有机转化。为此,通过自组装将接枝在GR框架上的超薄绝缘聚合物层,即聚(烯丙胺盐酸盐)(PAH),静电插入TMC QDs与GR框架的界面,构建TMC QDs/PAH/GR三维空间多层异质结构。在这种明确的纳米结构中,TMC QDs充当光捕获天线,GR作为终端电子库,PAH作为中间界面电荷中继介质。我们确定超薄PAH中间层意外地以可调方式促进了光电子从TMC QDs向GR框架的迁移,增强了TMC QDs的电荷分离,并在可见光下显著提高了对芳香族硝基化合物厌氧还原为氨基衍生物以及醇氧化为醛的光活性。阐明了此类TMC QDs/PAH/GR光系统的光氧化还原催化机制,并全面确定了这些光氧化还原有机转化反应中的活性物种。我们的工作将开辟新的领域,通过非共轭绝缘聚合物精细调节TMC QDs的电荷传输以实现太阳能转换。