Su Peng, Li Shen, Xiao Fang-Xing
College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, P. R. China.
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Small. 2024 Aug;20(35):e2400958. doi: 10.1002/smll.202400958. Epub 2024 Apr 21.
Quantum dots (QDs) colloidal nanocrystals are attracting enduring interest by scientific communities for solar energy conversion due to generic physicochemical merits including substantial light absorption coefficient, quantum confinement effect, enriched catalytically active sites, and tunable electronic structure. However, photo-induced charge carriers of QDs suffer from ultra-short charge lifespan and poor stability, rendering controllable vectorial charge modulation and customizing robust and stable QDs artificial photosystems challenging. Herein, tailor-made oppositely charged transition metal chalcogenides quantum dots (TMCs QDs) and MXene quantum dots (MQDs) are judiciously harnessed as the building blocks for electrostatic layer-by-layer assembly buildup on the metal oxides (MOs) framework. In these exquisitely designed LbL assembles MOs/(TMCs QDs/MQDs) heterostructured photoanodes, TMCs QDs layer acts as light-harvesting antennas, and MQDs layer serves as electron-capturing mediator to relay cascade electrons from TMCs QDs to the MOs substrate, thereby yielding the spatially ordered tandem charge transport chain and contributing to the significantly boosted charge separation over TMCs QDs and solar water oxidation efficiency of MOs/(TMCs QDs/MQDs) photoanodes. The relationship between interface configuration and charge transfer characteristics is unambiguously unlocked, by which photoelectrochemical mechanism is elucidated. This work would provide inspiring ideas for precisely mediating interfacial charge transfer pathways over QDs toward solar energy conversion.
量子点(QDs)胶体纳米晶体因其具有诸如高吸光系数、量子限域效应、丰富的催化活性位点和可调电子结构等一般物理化学优点,在太阳能转换方面一直吸引着科学界的持续关注。然而,量子点的光生电荷载流子具有极短的电荷寿命和较差的稳定性,这使得可控的矢量电荷调制以及定制稳健且稳定的量子点人工光系统具有挑战性。在此,定制的带相反电荷的过渡金属硫族化物量子点(TMCs QDs)和MXene量子点(MQDs)被明智地用作在金属氧化物(MOs)框架上进行静电逐层组装的构建块。在这些精心设计的逐层组装的MOs/(TMCs QDs/MQDs)异质结构光阳极中,TMCs QDs层充当光捕获天线,MQDs层充当电子捕获介质,将级联电子从TMCs QDs中继到MOs基板,从而产生空间有序的串联电荷传输链,并有助于显著提高TMCs QDs上的电荷分离以及MOs/(TMCs QDs/MQDs)光阳极的太阳能水氧化效率。界面构型与电荷转移特性之间的关系被明确揭示,据此阐明了光电化学机制。这项工作将为精确介导量子点上的界面电荷转移途径以实现太阳能转换提供启发性思路。