文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Combining the potential of 3D printed buccal films and nanostructured lipid carriers for personalised cannabidiol delivery.

作者信息

Abdella Sadikalmahdi, Kim Sangseo, Afinjuomo Franklin, Song Yunmei, Upton Richard, Garg Sanjay

机构信息

Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.

出版信息

Drug Deliv Transl Res. 2024 Apr;14(4):984-1004. doi: 10.1007/s13346-023-01446-0. Epub 2023 Oct 30.


DOI:10.1007/s13346-023-01446-0
PMID:37903964
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10927780/
Abstract

Cannabidiol (CBD) has been recognized for its numerous therapeutic benefits, such as neuroprotection, anti-inflammatory effects, and cardioprotection. However, CBD has some limitations, including unpredictable pharmacokinetics and low oral bioavailability. To overcome the challenges associated with CBD delivery, we employed Design of Experiments (DoE), lipid carriers, and 3D printing techniques to optimize and develop buccal film loaded with CBD-NLCs. Three-factor Box-Behnken Design was carried out to optimise the NLCs and analyse the effect of independent factors on dependent factors. The emulsification-ultrasonication technique was used to prepare the NLCs. A pressure-assisted micro-syringe printing technique was used to produce the films. The produced films were studied for physicochemical, and mechanical properties, release profiles, and predicted in vivo performance. The observed particle size of the NLCs ranged from 12.17 to 84.91 nm whereas the PDI varied from 0.099 to 0.298. Lipid and sonication time positively affected the particle size whereas the surfactant concentration was inversely related. CBD was incorporated into the optimal formulation and the observed particle size, PDI, and zeta potential for the CBD-NLCs were 94.2 ± 0.47 nm, 0.11 ± 0.01 and - 11.8 ± 0.52 mV. Hydroxyethyl cellulose (HEC)-based gel containing the CBD-NLCs was prepared and used as a feed for 3D printing. The CBD-NLCs film demonstrated a slow and sustained in vitro release profile (84. 11 ± 7.02% in 6 h). The predicted AUC h, C, and T were 201.5 µg·h/L, 0.74 µg/L, and 1.28 h for a film with 0.4 mg of CBD, respectively. The finding demonstrates that a buccal film of CBD-NLCs can be fabricated using 3D printing.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/713347674392/13346_2023_1446_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/1d711d2eb38a/13346_2023_1446_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/8f076cd2f779/13346_2023_1446_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/5402005d1d47/13346_2023_1446_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/d8f5318fac47/13346_2023_1446_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/f09776a37e54/13346_2023_1446_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/c71492599af6/13346_2023_1446_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/23cf777e7f42/13346_2023_1446_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/d88c9421d0c2/13346_2023_1446_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/2ac3b84c6531/13346_2023_1446_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/6962556cac93/13346_2023_1446_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/27823ab4c0be/13346_2023_1446_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/fce9e2a29578/13346_2023_1446_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/53e2ac08ee62/13346_2023_1446_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/cf818f88d227/13346_2023_1446_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/be6963e552ca/13346_2023_1446_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/713347674392/13346_2023_1446_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/1d711d2eb38a/13346_2023_1446_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/8f076cd2f779/13346_2023_1446_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/5402005d1d47/13346_2023_1446_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/d8f5318fac47/13346_2023_1446_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/f09776a37e54/13346_2023_1446_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/c71492599af6/13346_2023_1446_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/23cf777e7f42/13346_2023_1446_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/d88c9421d0c2/13346_2023_1446_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/2ac3b84c6531/13346_2023_1446_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/6962556cac93/13346_2023_1446_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/27823ab4c0be/13346_2023_1446_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/fce9e2a29578/13346_2023_1446_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/53e2ac08ee62/13346_2023_1446_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/cf818f88d227/13346_2023_1446_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/be6963e552ca/13346_2023_1446_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1648/10927780/713347674392/13346_2023_1446_Fig16_HTML.jpg

相似文献

[1]
Combining the potential of 3D printed buccal films and nanostructured lipid carriers for personalised cannabidiol delivery.

Drug Deliv Transl Res. 2024-4

[2]
Development and characterization of nanostructured lipid carriers for cannabidiol delivery.

Food Chem. 2024-5-30

[3]
Dermatokinetic assessment of luliconazole-loaded nanostructured lipid carriers (NLCs) for topical delivery: QbD-driven design, optimization, and in vitro and ex vivo evaluations.

Drug Deliv Transl Res. 2022-5

[4]
Cannabidiol-Loaded Nanostructured Lipid Carriers (NLCs) for Dermal Delivery: Enhancement of Photostability, Cell Viability, and Anti-Inflammatory Activity.

Pharmaceutics. 2023-2-6

[5]
Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): An improved dermatokinetic profile for inflammatory disorder(s).

Int J Pharm. 2017-1-30

[6]
Enhancement of in-vitro anti-oral cancer activities of silymarin using dispersion of nanostructured lipid carrier in mucoadhesive in-situ gel.

Int J Pharm. 2023-4-5

[7]
Development of Triamcinolone Acetonide-Loaded Nanostructured Lipid Carriers (NLCs) for Buccal Drug Delivery Using the Box-Behnken Design.

Molecules. 2018-4-23

[8]
Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain.

Eur J Pharm Sci. 2021-4-1

[9]
CBD-Loaded Nanostructured Lipid Carriers: Optimization, Characterization, and Stability.

ACS Omega. 2024-9-19

[10]
Advanced multifunctional nano-lipid carrier loaded gel for targeted delivery of 5-flurouracil and cannabidiol against non-melanoma skin cancer.

Environ Res. 2023-9-15

引用本文的文献

[1]
Exploring the interconnected properties of cannabidiol suspensions and orodispersible films.

Sci Rep. 2025-7-1

[2]
Optimising Cannabidiol Delivery: Improving Water Solubility and Permeability Through Phospholipid Complexation.

Int J Mol Sci. 2025-3-14

[3]
Targeting Acne: Development of Monensin-Loaded Nanostructured Lipid Carriers.

Int J Nanomedicine. 2025-2-19

[4]
3D Printed Bigel: A Novel Delivery System for Cannabidiol-Rich Hemp Extract.

Gels. 2024-11-26

[5]
Preparation and In Vitro Evaluation of Montelukast Sodium-Loaded 3D Printed Orodispersible Films for the Treatment of Asthma.

AAPS PharmSciTech. 2024-9-17

本文引用的文献

[1]
Development and Optimization of Imiquimod-Loaded Nanostructured Lipid Carriers Using a Hybrid Design of Experiments Approach.

Int J Nanomedicine. 2023

[2]
Cannabidiol-Loaded Nanostructured Lipid Carriers (NLCs) for Dermal Delivery: Enhancement of Photostability, Cell Viability, and Anti-Inflammatory Activity.

Pharmaceutics. 2023-2-6

[3]
Cod liver oil nano-structured lipid carriers (Cod-NLCs) as a promising platform for nose to brain delivery: Preparation, optimization, cytotoxicity & biodistribution utilizing radioiodinated zopiclone.

Int J Pharm X. 2023-1-4

[4]
Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches.

J Control Release. 2022-12

[5]
3D printed bilayer mucoadhesive buccal film of estradiol: Impact of design on film properties, release kinetics and predicted in vivo performance.

Int J Pharm. 2022-11-25

[6]
Novel Strategies against Cancer: Dexibuprofen-Loaded Nanostructured Lipid Carriers.

Int J Mol Sci. 2022-9-25

[7]
The Evolution of the 3D-Printed Drug Delivery Systems: A Review.

Pharmaceutics. 2022-6-21

[8]
Pulmonary Delivery of Hydroxychloroquine Nanostructured Lipid Carrier as a Potential Treatment of COVID-19.

Polymers (Basel). 2022-6-28

[9]
Mucoadhesive Buccal Film of Estradiol for Hormonal Replacement Therapy: Development and In-Vivo Performance Prediction.

Pharmaceutics. 2022-2-28

[10]
Orodispersible Films: A Delivery Platform for Solid Lipid Nanoparticles?

Pharmaceutics. 2021-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索