Krushelnitsky Alexey, Saalwächter Kay
Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
Magn Reson (Gott). 2020 Oct 29;1(2):247-259. doi: 10.5194/mr-1-247-2020. eCollection 2020.
Chemical shift anisotropy (CSA) and dipolar CODEX (Cenralband Only Detection of EXchange) experiments enable abundant quantitative information on the reorientation of the CSA and dipolar tensors to be obtained on millisecond-second timescales. At the same time, proper performance of the experiments and data analysis can often be a challenge since CODEX is prone to some interfering effects that may lead to incorrect interpretation of the experimental results. One of the most important such effects is RIDER (relaxation-induced dipolar exchange with recoupling). It appears due to the dipolar interaction of the observed nuclei with some other nuclei, which causes an apparent decay in the mixing time dependence of the signal intensity reflecting not molecular motion, but spin flips of the adjacent nuclei. This may hamper obtaining correct values of the parameters of molecular mobility. In this contribution we consider in detail the reasons why the RIDER distortions remain even under decoupling conditions and propose measures to eliminate them. That is, we suggest (1) using an additional filter between the cross-polarization (CP) section and the CODEX recoupling blocks that suppresses the interfering anti-phase coherence responsible for the -H RIDER and (2) recording only the cosine component of the CODEX signal since it is less prone to the RIDER distortions in comparison to the sine component. The experiments were conducted on rigid model substances as well as microcrystalline H N-enriched proteins (GB1 and SH3) with a partial back-exchange of labile protons. Standard CSA and dipolar CODEX experiments reveal a fast-decaying component in the mixing time dependence of N nuclei in proteins, which can be misinterpreted as a slow overall protein rocking motion. However, the RIDER-free experimental setup provides flat mixing time dependences, meaning that the studied proteins do not undergo global motions on the millisecond timescale.
化学位移各向异性(CSA)和偶极编码(仅中心带交换检测)实验能够在毫秒至秒的时间尺度上获得大量关于CSA和偶极张量重取向的定量信息。与此同时,由于编码容易受到一些干扰效应的影响,这些效应可能导致对实验结果的错误解释,因此实验的正确执行和数据分析往往是一个挑战。其中最重要的效应之一是RIDER(弛豫诱导的偶极交换与再耦合)。它的出现是由于被观测核与其他一些核的偶极相互作用,这导致信号强度在混合时间依赖性上出现明显衰减,这种衰减反映的不是分子运动,而是相邻核的自旋翻转。这可能会妨碍获得正确的分子迁移率参数值。在本论文中,我们详细考虑了即使在去耦条件下RIDER失真仍然存在的原因,并提出了消除这些失真的措施。也就是说,我们建议(1)在交叉极化(CP)部分和编码再耦合模块之间使用一个额外的滤波器,该滤波器可以抑制导致¹H RIDER的干扰反相相干性;(2)只记录编码信号的余弦分量,因为与正弦分量相比,它更不容易受到RIDER失真的影响。实验是在刚性模型物质以及具有不稳定质子部分反向交换的微晶¹H富集蛋白质(GB1和SH3)上进行的。标准的CSA和偶极编码实验揭示了蛋白质中¹⁵N核在混合时间依赖性上存在一个快速衰减的分量,这可能会被误解为蛋白质整体的缓慢摇摆运动。然而,无RIDER的实验装置提供了平坦的混合时间依赖性,这意味着所研究的蛋白质在毫秒时间尺度上不会发生整体运动。