Suppr超能文献

对SETD2、NSD1、NSD2、NSD3和ASH1L进行系统性扰动,揭示了它们对H3K36甲基化的不同贡献。

Systematic perturbations of SETD2, NSD1, NSD2, NSD3 and ASH1L reveals their distinct contributions to H3K36 methylation.

作者信息

Shipman Gerry A, Padilla Reinnier, Horth Cynthia, Hu Bo, Bareke Eric, Vitorino Francisca N, Gongora Joanna M, Garcia Benjamin A, Lu Chao, Majewski Jacek

出版信息

bioRxiv. 2023 Oct 18:2023.09.27.559313. doi: 10.1101/2023.09.27.559313.

Abstract

BACKGROUND

Methylation of histone 3 lysine 36 (H3K36me) has emerged as an essential epigenetic component for the faithful regulation of gene expression. Despite its importance in development, disease, and cancer, how the molecular agents collectively shape the H3K36me landscape is unclear.

RESULTS

We use a mouse mesenchymal stem cell model to perturb the H3K36me deposition machinery and infer the activities of the five most prominent players: SETD2, NSD1, NSD2, NSD3, and ASH1L. We find that H3K36me2 is the most abundant of the three methylation states and is predominantly deposited at intergenic regions by NSD1, and partly by NSD2. In contrast, H3K36me1/3 are most abundant within exons and are positively correlated with gene expression. We demonstrate that while SETD2 deposits most H3K36me3, it also deposits H3K36me2 within transcribed genes. Additionally, loss of SETD2 results in an increase of exonic H3K36me1, suggesting other H3K36 methyltransferases (K36MTs) prime gene bodies with lower methylation states ahead of transcription. Through a reductive approach, we uncover the distribution patterns of NSD3- and ASH1L-catalyzed H3K36me2. While NSD1/2 establish broad intergenic H3K36me2 domains, NSD3 deposits H3K36me2 peaks on active promoters and enhancers. Meanwhile, the activity of ASH1L is restricted to the regulatory elements of developmentally relevant genes, and our analyses implicate PBX2 as a potential recruitment factor.

CONCLUSIONS

Within genes, SETD2 deposits both H3K36me2/3, while the other K36MTs are capable of depositing H3K36me1/2 independently of SETD2 activity. For the deposition of H3K36me1/2, we find a hierarchy of K36MT activities where NSD1>NSD2>NSD3>ASH1L. While NSD1 and NSD2 are responsible for most genome-wide propagation of H3K36me2, the activities of NSD3 and ASH1L are confined to active regulatory elements.

摘要

背景

组蛋白3赖氨酸36(H3K36me)甲基化已成为基因表达精确调控中一个重要的表观遗传成分。尽管其在发育、疾病和癌症中具有重要性,但分子因子如何共同塑造H3K36me景观尚不清楚。

结果

我们使用小鼠间充质干细胞模型来干扰H3K36me沉积机制,并推断出五个最主要参与者的活性:SETD2、NSD1、NSD2、NSD3和ASH1L。我们发现H3K36me2是三种甲基化状态中最丰富的,主要由NSD1在基因间区域沉积,部分由NSD2沉积。相比之下,H3K36me1/3在外显子内最丰富,且与基因表达呈正相关。我们证明,虽然SETD2沉积了大部分H3K36me3,但它也在转录基因内沉积H3K36me2。此外,SETD2的缺失导致外显子H3K36me1增加,表明其他H3K36甲基转移酶(K36MTs)在转录前使基因体具有较低的甲基化状态。通过一种简化方法,我们揭示了NSD3和ASH1L催化的H3K36me2的分布模式。虽然NSD1/2建立了广泛的基因间H3K36me2结构域,但NSD3在活跃启动子和增强子上沉积H3K36me2峰。同时,ASH1L的活性仅限于发育相关基因的调控元件,我们的分析表明PBX2是一个潜在的招募因子。

结论

在基因内,SETD2沉积H3K36me2/3,而其他K36MTs能够独立于SETD2活性沉积H3K36me1/2。对于H3K36me1/2的沉积,我们发现K36MT活性存在层次结构,即NSD1>NSD2>NSD3>ASH1L。虽然NSD1和NSD2负责全基因组大部分H3K36me2的传播,但NSD3和ASH1L的活性局限于活跃调控元件。

相似文献

3
Structural and functional specificity of H3K36 methylation.H3K36 甲基化的结构和功能特异性。
Epigenetics Chromatin. 2022 May 18;15(1):17. doi: 10.1186/s13072-022-00446-7.
8
Evaluation of NSD2 and NSD3 in overgrowth syndromes.NSD2和NSD3在过度生长综合征中的评估。
Eur J Hum Genet. 2005 Feb;13(2):150-3. doi: 10.1038/sj.ejhg.5201298.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验