Suppr超能文献

H3K36 甲基化的结构和功能特异性。

Structural and functional specificity of H3K36 methylation.

机构信息

Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

National University Health System (NUHS), Singapore, Singapore.

出版信息

Epigenetics Chromatin. 2022 May 18;15(1):17. doi: 10.1186/s13072-022-00446-7.

Abstract

The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.

摘要

组蛋白 H3 赖氨酸 36 位的甲基化(H3K36me)对于维持基因组稳定性至关重要。事实上,这种甲基化标记对于正确的转录、重组和 DNA 损伤反应都是必不可少的。H3K36 甲基转移酶的缺失和获得功能突变与人类发育障碍和各种癌症密切相关。结构分析表明,核小体的组成部分,如连接 DNA 和由组蛋白 H2A 和 H3 组成的疏水区,除了包含 H3K36 和催化 SET 结构域的组蛋白 H3 尾部之外,可能也是 H3K36 甲基化的决定因素。H3K36 甲基转移酶与核小体的相互作用与它们自身抑制变化的调节合作,精细地调节了 NSD2 和 NSD3 介导的 H3K36me 二甲基化以及 Set2/SETD2 介导的 H3K36me 三甲基化的精度。鉴定出与不同形式的 H3K36me 结合的特定结构特征和各种顺式作用因子,特别是 H3K36 的二甲基(H3K36me2)和三甲基(H3K36me3)形式,突出了 H3K36me 功能意义的复杂性。在这里,我们整合了这些发现,并提供了结构上的见解,以调节 H3K36me2 向 H3K36me3 的转化。我们还讨论了 H3K36me 与其他染色质修饰(特别是 H3K27me3、H3 乙酰化、DNA 甲基化和 RNA 中的 N6-甲基腺苷)在染色质表观基因组功能的生理调节中相互协作的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8424/9116022/9cda620e2cff/13072_2022_446_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验