Fazio Nicole, Mersch Kacey N, Hao Linxuan, Lohman Timothy M
bioRxiv. 2023 Oct 17:2023.10.13.561901. doi: 10.1101/2023.10.13.561901.
Much is still unknown about the mechanisms by which helicases unwind duplex DNA. Whereas structure-based models describe DNA unwinding as a consequence of mechanically pulling the DNA duplex across a wedge domain in the helicase by the single stranded (ss)DNA translocase activity of the ATPase motors, biochemical data indicate that processive DNA unwinding by the RecBCD helicase can occur in the absence of ssDNA translocation of the canonical RecB and RecD motors. Here, we present evidence that dsDNA unwinding is not a simple consequence of ssDNA translocation by the RecBCD motors. Using stopped-flow fluorescence approaches, we show that a RecB nuclease domain deletion variant (RecB CD) unwinds dsDNA at significantly slower rates than RecBCD, while the rate of ssDNA translocation is unaffected. This effect is primarily due to the absence of the nuclease domain and not the absence of the nuclease activity, since a nuclease-dead mutant (RecB CD), which retains the nuclease domain, showed no significant change in rates of ssDNA translocation or dsDNA unwinding relative to RecBCD on short DNA substrates (≤ 60 base pairs). This indicates that ssDNA translocation is not rate-limiting for DNA unwinding. RecB CD also initiates unwinding much slower than RecBCD from a blunt-ended DNA, although it binds with higher affinity than RecBCD. RecB CD also unwinds DNA ∼two-fold slower than RecBCD on long DNA (∼20 kilo base pair) in single molecule optical tweezer experiments, although the rates for RecB CD unwinding are intermediate between RecBCD and RecB CD. Surprisingly, significant pauses occur even in the absence of (crossover hotspot instigator) sites. We hypothesize that the nuclease domain influences the rate of DNA base pair melting, rather than DNA translocation, possibly allosterically. Since the rate of DNA unwinding by RecBCD also slows after it recognizes a sequence, RecB CD may mimic a post- state of RecBCD.
关于解旋酶解开双链DNA的机制,仍有许多未知之处。基于结构的模型将DNA解旋描述为通过ATP酶马达的单链(ss)DNA转位酶活性,将DNA双链机械地拉过解旋酶中的一个楔形结构域的结果,而生化数据表明,RecBCD解旋酶进行的持续性DNA解旋可以在没有典型的RecB和RecD马达的ssDNA转位的情况下发生。在这里,我们提供证据表明双链DNA解旋不是RecBCD马达进行ssDNA转位的简单结果。使用停流荧光方法,我们表明RecB核酸酶结构域缺失变体(RecBΔCD)解开双链DNA的速度明显慢于RecBCD,而ssDNA转位的速度不受影响。这种效应主要是由于核酸酶结构域的缺失,而不是核酸酶活性的缺失,因为保留核酸酶结构域的核酸酶失活突变体(RecBΔCD)在短DNA底物(≤60个碱基对)上相对于RecBCD,在ssDNA转位或双链DNA解旋速度上没有显著变化。这表明ssDNA转位不是DNA解旋的限速步骤。RecBΔCD从平端DNA开始解旋的速度也比RecBCD慢得多,尽管它的结合亲和力比RecBCD高。在单分子光镊实验中,RecBΔCD在长DNA(约20千碱基对)上解开DNA的速度也比RecBCD慢约两倍,尽管RecBΔCD解旋的速度介于RecBCD和RecBΔCD之间。令人惊讶的是,即使在没有χ(交叉热点引发剂)位点的情况下也会出现明显的停顿。我们假设核酸酶结构域影响DNA碱基对解链的速度,而不是DNA转位,可能是通过变构作用。由于RecBCD识别χ序列后DNA解旋的速度也会减慢,RecBΔCD可能模拟了RecBCD的χ后状态。