School of Mathematical Sciences, Queensland University of Technology, 4 George Street, Brisbane, Queensland 4000, Australia.
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales 2522, Australia.
Proc Biol Sci. 2023 Nov 8;290(2010):20231554. doi: 10.1098/rspb.2023.1554. Epub 2023 Nov 1.
Explaining the maintenance of diverse species assemblages is a central goal of ecology and conservation. Recent coexistence mechanisms highlight the role of dispersal as a source of the differences that allow similar species to coexist. Here, we propose a new mechanism for species coexistence that is based on dispersal differences, and on the geometry of the habitat patch. In a finite habitat patch with complex boundaries, species with different dispersal abilities will arrange themselves in stable, concentric patterns of dominance. Species with superior competitive and dispersal abilities will dominate the interior of the patch, with inferior species at the periphery. We demonstrate and explain the mechanism on a simple one-dimensional domain, and then on two-dimensional habitat patches with realistic geometries. Finally, we use metrics from landscape ecology to demonstrate that habitat patches with more complex geometries can more easily support coexistence. The factors that underpin this new coexistence mechanism-different dispersal abilities and habitat patches with complex geometries-are common to many marine and terrestrial ecosystems, and it is therefore possible that the mechanism is a common factor supporting diverse species assemblages.
解释不同物种组合的维持是生态学和保护生物学的一个核心目标。最近的共存机制强调了扩散作为允许相似物种共存的差异来源的作用。在这里,我们提出了一个基于扩散差异和栖息地斑块几何形状的新物种共存机制。在具有复杂边界的有限栖息地斑块中,具有不同扩散能力的物种将以稳定的、同心的优势模式排列自己。具有优越竞争和扩散能力的物种将主导斑块的内部,而劣势物种则位于边缘。我们在一个简单的一维域上演示并解释了该机制,然后在具有真实几何形状的二维栖息地斑块上进行了演示。最后,我们使用景观生态学的度量标准来证明具有更复杂几何形状的栖息地斑块可以更容易地支持共存。支持这种新的共存机制的因素——不同的扩散能力和具有复杂几何形状的栖息地斑块——在许多海洋和陆地生态系统中都很常见,因此该机制可能是支持多种物种组合的一个共同因素。