Suppr超能文献

Serotonin- and dopamine-sensitive adenylate cyclase in molluscan nervous system. Biochemical and electrophysiological analysis of the pharmacological properties and the GTP-dependence.

作者信息

Deterre P, Paupardin-Tritsch D, Bockaert J

出版信息

Brain Res. 1986 Nov;387(2):101-9. doi: 10.1016/0169-328x(86)90001-x.

Abstract

Helix aspersa neuronal cell membranes contain distinct serotonin (5-HT) and dopamine (DA) sensitive adenylate cyclases. We have taken advantage of the fact that in this system, both in vitro (enzymatic assays) and in vivo (electrophysiological measurements) experiments can be used to explore the GTP dependence and the pharmacological properties of this neurotransmitter-sensitive enzyme system. The first property was studied using non-hydrolysable GTP analogs (guanosine 5'-O-(3-thio-triphosphate) or GTP gamma S, and guanosine 5'-imido diphosphate or Gpp(NH)p). In vitro, these two components stimulate the enzyme activity but with different potencies (Kapparent = 10(-8) to 5 X 10(-8) M for GTP gamma S, and 10(-5) M for Gpp(NH)p). Intracellular injections of GTP gamma S, but not of Gpp(NH)p, produced an electrophysiological response similar to the one elicited by 5-HT and DA. These results imply that, even in the presence of the high endogenous GTP concentration normally present in the cell (10(-3) M), GTP gamma S may bind to the GTP-binding protein. Such an interpretation is consistent with the in vitro competition experiments between GTP and GTP gamma S for adenylate cyclase activation. The pharmacology of 5-HT and DA receptors involved in adenylate cyclase stimulation and electrophysiological responses was studied. Serotoninergic antagonists and neuroleptics inhibited the 5-HT-sensitive adenylate cyclase in a stereospecific manner. However, their inhibition was not simply competitive. Our results suggest that they irreversibly bind a component localized on the cytoplasmic side of the membrane. Unexpectedly, the DA receptor coupled with adenylate cyclase was insensitive to any of the several antagonists tested.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验