Suppr超能文献

采用面向类别的化学计量学和全二维气相色谱-质谱联用技术对采出水样品进行分类。

Classification of produced water samples using class-oriented chemometrics and comprehensive two-dimensional gas chromatography coupled to mass spectrometry.

作者信息

Ballén Castiblanco Julián Eduardo, Calvacanti Ferreira Victor Hugo, Teixeira Carlos Alberto, Hantao Leandro Wang

机构信息

Institute of Chemistry, University of Campinas, Campinas, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), Brazil.

Institute of Chemistry, University of Campinas, Campinas, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), Brazil.

出版信息

Talanta. 2024 Feb 1;268(Pt 1):125343. doi: 10.1016/j.talanta.2023.125343. Epub 2023 Oct 26.

Abstract

Produced water (PW) is a type of wastewater that arises during oil and gas production. Due to its potential environmental impact, PW is one of the most closely monitored forms of wastewater in the petroleum industry. The total oil and grease (TOG) content in the water is a crucial parameter for assessing the environmental impact of PW. Traditional methods for analyzing TOG in PW can be time-consuming and may not be compatible with green chemistry principles. In this study, an alternative method for classifying PW samples is proposed using a one-class classifier (OCC) model, which has proven useful for classification problems. To achieve this goal, headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography (GC×GC) were employed to obtain TOG profiles from PW. A series of simulated PW samples containing TOG were generated using a mixture design comprising four petrochemicals at concentrations ranging from 10 mg L to 50 mg L. The polydimethylsiloxane (PDMS) fiber showed the most representative extraction of analytes. The optimization of the HS-SPME method was performed using a Doehlert design with two variables, and the final conditions were set at 80 °C and 70 min for extraction temperature and time, respectively. A pixel-based data approach was used to implement data-driven soft independent modeling by class analogy (DD-SIMCA). Although DD-SIMCA is a developing area in GC×GC studies, the proposed model produced outstanding results with a sensitivity of 94.3 %, specificity of 95.0 %, and accuracy of 94.5 %, considering the complex and broad compositional range of the modeled mixtures. These findings demonstrated the effectiveness of the OCC model approach in classifying PW samples according to environmental regulations.

摘要

采出水(PW)是石油和天然气生产过程中产生的一种废水。由于其潜在的环境影响,采出水是石油工业中监测最严格的废水形式之一。水中的总油和油脂(TOG)含量是评估采出水环境影响的关键参数。传统的分析采出水中TOG的方法可能耗时且可能不符合绿色化学原则。在本研究中,提出了一种使用单类分类器(OCC)模型对采出水样品进行分类的替代方法,该模型已被证明对分类问题有用。为实现这一目标,采用顶空固相微萃取(HS-SPME)结合全二维气相色谱(GC×GC)从采出水中获取TOG谱图。使用包含四种石化产品的混合设计,以10 mg/L至50 mg/L的浓度生成了一系列含有TOG的模拟采出水样品。聚二甲基硅氧烷(PDMS)纤维对分析物的萃取最具代表性。使用具有两个变量的Doehlert设计对HS-SPME方法进行了优化,最终条件分别设定为萃取温度80°C和时间70分钟。采用基于像素的数据方法通过类比实现数据驱动的软独立建模(DD-SIMCA)。尽管DD-SIMCA是GC×GC研究中的一个发展领域,但考虑到建模混合物的复杂和广泛的组成范围,所提出的模型产生了出色的结果,灵敏度为94.3%,特异性为95.0%,准确率为94.5%。这些发现证明了OCC模型方法在根据环境法规对采出水样品进行分类方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验