School of Geography, Nanjing Normal University, Nanjing 210023, China.
Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China.
Sci Total Environ. 2024 Jan 15;908:168194. doi: 10.1016/j.scitotenv.2023.168194. Epub 2023 Oct 31.
Available N (N) is important to nurish plant-microbial system and sequestrate carbon (C) in terrestrial ecosystems. For forest ecosystem, N is usually calculated as the sum of N fixation (N), N deposition (N) and soil available N production (N), in which N determined the N production and its temporal changes. While, there is still a lack of N estimation at the global and regional level due to the temporal and spatial variability of influencing factors, such as climate and soil physicochemical properties. By assembling a dataset of gross rates of soil N mineralization (GR), immobilization of ammonium (NH) (GR) and nitrate (NO) (GR), as well as their corresponding geographic information, climate and main soil physicochemical properties, the N produced from organic N (N) mineralization and inorganic N (N) immobilization turnover (MIT) was calculated via building a random forest (RF) model in global tropical forests. The results revealed a good fit between the observed and predicted GR (R = 0.76), GR (R = 0.77) and GR (R = 0.67). We further estimated that the total mineralized N, immobilized NH and NO was 23.97 (10.48-37.46), 17.98 (5.81-30.15) and 4.86 (1.46-8.26) Pg N year, respectively, leading to the total N of 1.13 (-0.95-3.21) Pg N year. Referring to the reported average density of N and N, the total N and N was 0.03-0.05 and 0.01 Pg N year, respectively, by producting density and square meter of global tropic forest. Then the total N of global tropic forest ecosystem was 1.18 (-0.91-3.27) Pg N year (N + N + N). According to the tight stoichiometric relationship between C and N in the production of gross primary productivity (GPP) and soil respiration (R), C:N ratio of 31.8-41.9 and 22.7-48.2 was calculated, respectively, which all fall into the C:N ratio range of plants and litter (13.9-75.9) in tropical forest ecosystem. These results confirmed the prediction of N production from MIT was in line with theoretic estimates by applying RF machine learning. To our knowledge, this is the first estimation of N and the results provide the theoretical basis to evaluate soil C sequestration potential in tropical (e.g. southern America, southeast Asia and Africa) forest ecosystem.
可用 N(N)对植物-微生物系统的养育和陆地生态系统中碳(C)的隔离很重要。对于森林生态系统,N 通常被计算为固氮(N)、N 沉积(N)和土壤有效 N 产生(N)的总和,其中 N 决定了 N 的产生及其时间变化。然而,由于影响因素(如气候和土壤物理化学性质)的时空变异性,全球和区域水平的 N 估算仍然缺乏。通过组装土壤 N 矿化(GR)、铵(NH)(GR)和硝酸盐(NO)(GR)固定的总速率数据集,以及它们相应的地理信息、气候和主要土壤物理化学性质,通过在全球热带森林中构建随机森林(RF)模型,计算了有机 N(N)矿化和无机 N(N)固定周转(MIT)产生的 N。结果表明,GR(R=0.76)、GR(R=0.77)和 GR(R=0.67)的观测值与预测值之间存在良好的拟合。我们进一步估计,总矿化 N、固定的 NH 和 NO 分别为 23.97(10.48-37.46)、17.98(5.81-30.15)和 4.86(1.46-8.26)Pg N 年,导致总 N 为 1.13(-0.95-3.21)Pg N 年。参考报告的 N 和 N 的平均密度,通过全球热带森林的产品密度和平方米,总 N 和 N 分别为 0.03-0.05 和 0.01 Pg N 年。然后,全球热带森林生态系统的总 N 为 1.18(-0.91-3.27)Pg N 年(N+N+N)。根据总初级生产力(GPP)和土壤呼吸(R)生产中 C 和 N 之间紧密的化学计量关系,分别计算出 C:N 比为 31.8-41.9 和 22.7-48.2,这两个 C:N 比都落在热带森林生态系统中植物和凋落物(13.9-75.9)的 C:N 比范围内。这些结果证实了通过应用 RF 机器学习从 MIT 产生的 N 预测与理论估计一致。据我们所知,这是对 N 的首次估计,结果为评估热带(例如南美洲、东南亚和非洲)森林生态系统的土壤 C 封存潜力提供了理论依据。