Suppr超能文献

具有量化的不确定网络化线性控制系统的事件触发积分滑模控制

Event-triggered integral sliding mode control for uncertain networked linear control systems with quantization.

作者信息

Zhao Xinggui, Meng Bo, Wang Zhen

机构信息

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China.

出版信息

Math Biosci Eng. 2023 Aug 21;20(9):16705-16724. doi: 10.3934/mbe.2023744.

Abstract

In this paper, the integral sliding mode (ISM, SM) controller is designed to address the problem of implementing non-periodic sampled data for a class of networked linear systems with matched and unmatched uncertainties. Due to the redesigned gain of the nominal controller, the feedback control used by the nominal controller guarantees the asymptotic stability of the uncertain networked linear system. The discontinuous control uses intermittent control based on the reaching law to achieve the finite-time reachability of practical SM band. Based on the defined measurement error, the event-triggered (ET) condition can be derived, and furthermore, it guarantees a sufficient condition for the existence of the actual SM. On this basis, a quantization scheme is added to further decrease the network transmission burden of the linear system. No Zeno behavior occurs in the system owing to the existence of a positive lower bound of inter-event time. Compared with the conventional integral sliding mode control (ISMC, SMC), the proposed control law can not only relieve the network burden, but also decrease the transmission energy loss. Finally, simulation results of a numerical example and a mass-spring damping system demonstrate the effectiveness of the proposed method.

摘要

本文设计了积分滑模(ISM,SM)控制器,以解决一类具有匹配和不匹配不确定性的网络化线性系统中实现非周期采样数据的问题。由于重新设计了标称控制器的增益,标称控制器使用的反馈控制保证了不确定网络化线性系统的渐近稳定性。不连续控制采用基于到达律的间歇控制来实现实际滑模带的有限时间可达性。基于定义的测量误差,可以推导事件触发(ET)条件,并且进一步保证了实际滑模存在的充分条件。在此基础上,添加了量化方案以进一步降低线性系统的网络传输负担。由于事件间时间存在正下界,系统中不会出现芝诺行为。与传统的积分滑模控制(ISMC,SMC)相比,所提出的控制律不仅可以减轻网络负担,还可以降低传输能量损失。最后,一个数值例子和一个质量-弹簧阻尼系统的仿真结果证明了所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验