Suppr超能文献

具有未知非线性干扰的网络化切换线性系统的基于神经网络的事件触发滑模控制

Neural-Network-Based Event-Triggered Sliding Mode Control for Networked Switched Linear Systems With the Unknown Nonlinear Disturbance.

作者信息

Wang Yuzhong, Zhao Jun

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):3885-3896. doi: 10.1109/TNNLS.2021.3119665. Epub 2023 Aug 4.

Abstract

The event-triggered sliding mode control (SMC) problem for uncertain networked switched systems with the external unknown nonlinear disturbance is investigated. A neural network (NN) receiving the triggered state is utilized to approximate the external unknown nonlinear disturbance. First, a novel adaptive mode-dependent continuous-time event-triggering scheme (ETS) based on NN weights' estimations is proposed to reduce the burden of the network bandwidth. Then, using the time-varying Lyapunov function method, a novel adaptive NN event-triggered sliding mode controller is established and a dwell-time switching law is obtained, which can guarantee ultimate boundedness, and attain the sliding region around the specified sliding surface for switched systems. Further, a new integral sliding surface that depends on the system states at switching instants and includes the exponential term is proposed. Obtaining the boundary of the sliding mode region relies on the exponential term for continuous-time systems. Moreover, the Zeno behavior can be avoided under the proposed continuous-time ETS by dividing event-triggering signals and switching signals. Finally, a comparative example and a switched Chua's Circuit example are given to illustrate the effectiveness of the proposed method.

摘要

研究了具有外部未知非线性干扰的不确定网络化切换系统的事件触发滑模控制(SMC)问题。利用一个接收触发状态的神经网络(NN)来逼近外部未知非线性干扰。首先,提出了一种基于神经网络权重估计的新型自适应模式依赖连续时间事件触发方案(ETS),以减轻网络带宽负担。然后,采用时变李雅普诺夫函数方法,建立了一种新型自适应神经网络事件触发滑模控制器,并得到了一种驻留时间切换律,该切换律可以保证最终有界性,并使切换系统在指定滑模面周围达到滑模区域。此外,还提出了一种依赖于切换时刻系统状态并包含指数项的新型积分滑模面。对于连续时间系统,获得滑模区域的边界依赖于指数项。此外,通过划分事件触发信号和切换信号,可以在所提出的连续时间ETS下避免芝诺行为。最后,给出了一个对比例子和一个切换蔡氏电路例子来说明所提方法的有效性。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验