Onoue Kana, Nasu Akira, Matsumoto Kazuhiko, Hagiwara Rika, Kobayashi Hiroaki, Matsui Masaki
Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-0810, Japan.
Department of Chemistry, Hokkaido University, Sapporo 060-0810, Japan.
ACS Appl Mater Interfaces. 2023 Nov 15;15(45):52333-52341. doi: 10.1021/acsami.3c07177. Epub 2023 Nov 3.
Interfacial materials design is critical in the development of all-solid-state lithium batteries. We must develop an electrode-electrolyte interface with low resistance and effectively utilize the energy stored in the battery system. Here, we investigated the highly resistive layer formation process at the interface of a layered cathode: LiCoO, and a garnet-type solid-state electrolyte: LiLaZrTaO, during the cosintering process using in situ/ex situ high-temperature X-ray diffraction. The onset temperature of the reaction between a lithium-deficient LiCoO and LiLaZrTaO is 60 °C, while a stoichiometric LiCoO does not show any reaction up to 900 °C. The chemical potential gap of lithium first triggers the lithium migration from the garnet phase to the LiCoO below 200 °C. The lithium-extracted garnet gradually decomposes around 200 °C and mostly disappears at 500 °C. Since the interdiffusion of the transition metal is not observed below 500 °C, the early-stage reaction product is the decomposed lithium-deficient garnet phase. Electrochemical impedance spectroscopy results showed that the highly resistive layer is formed even below 200 °C. The present work offers that the origin of the highly resistive layer formation is triggered by lithium migration at the solid-solid interface and decomposition of the lithium-deficient garnet phase. We must prevent spontaneous lithium migration at the cathode-electrolyte interface to avoid a highly resistive layer formation. Our results show that the lithium chemical potential gap should be the critical parameter for designing an ideal solid-solid interface for all-solid-state battery applications.
界面材料设计在全固态锂电池的开发中至关重要。我们必须开发一种具有低电阻的电极 - 电解质界面,并有效利用存储在电池系统中的能量。在此,我们使用原位/非原位高温X射线衍射研究了层状阴极LiCoO与石榴石型固态电解质LiLaZrTaO在共烧结过程中界面处高电阻层的形成过程。缺锂的LiCoO与LiLaZrTaO之间反应的起始温度为60°C,而化学计量比的LiCoO在高达900°C时未显示任何反应。锂的化学势差首先在200°C以下触发锂从石榴石相迁移到LiCoO。锂提取后的石榴石在200°C左右逐渐分解,在500°C时基本消失。由于在500°C以下未观察到过渡金属的相互扩散,早期反应产物是分解后的缺锂石榴石相。电化学阻抗谱结果表明,即使在200°C以下也会形成高电阻层。目前的工作表明,高电阻层形成的起源是由固 - 固界面处的锂迁移和缺锂石榴石相的分解引发的。我们必须防止在阴极 - 电解质界面处自发的锂迁移,以避免形成高电阻层。我们的结果表明,锂化学势差应该是设计用于全固态电池应用的理想固 - 固界面的关键参数。