Dong Cong, Bi Zhihong, Li Rui, Ma Yuxin, Li Bin, Shi Haodong, Zhang Zhizhen, Wu Zhong-Shuai
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Natl Sci Rev. 2025 Jun 2;12(7):nwaf217. doi: 10.1093/nsr/nwaf217. eCollection 2025 Jul.
Sulfide solid-state electrolytes (SSEs) are promising candidates for next-generation high-safety all-solid-state lithium batteries (ASSLBs). However, they still face challenges such as low anodic stability limits and poor interfacial compatibility with high-voltage cathode active materials. Here, we present a series of fluorine-doped argyrodite sulfide SSEs, LiPSClF (LPSClF) (0 < x ≤ 1.5), toward high-voltage LiCoO (LCO)-based ASSLBs, via the formation of a stable fluorine-containing passivating interphase on the cathode active materials surface. Notably, fluorine incorporation significantly raises the practical oxidation limit of LPSCl from 2.4 to 3.5 V for LPSClF, while maintaining a high room-temperature ionic conductivity of 3.3 mS cm. This enhancement is attributed to increased lithium-ion disorder and fluorine's high electronegativity. The ASSLBs, fabricated by directly assembling an LPSClF SSE with an uncoated commercial LCO cathode, demonstrate stable cycling with low polarization voltage at 4.3 V (vs. Li/Li), achieving 92.1% capacity retention after 700 cycles at 0.2 C. Remarkably, even under a 4.6 V high-voltage condition, our battery maintains 96.2% capacity retention over 300 cycles, attributed to the formation of a stable fluorine-containing cathode-electrolyte interphase on the LCO surface. When coupled with a lithium metal anode, Li|LPSClF|LCO ASSLB achieved stable cycling at 4.6 V and delivered 137 mAh g after 100 cycles at 0.5 C. Significantly, the Si|LPSCl|LPSClF|LCO ASSLB, cycled at an ultra-high mass loading LCO of 203.8 mg cm, exhibits an exceptional areal capacity of 25.7 mAh cm, demonstrating immense potential of LPSClF SSE for practical high-energy ASSLBs.
硫化物固态电解质(SSEs)是下一代高安全性全固态锂电池(ASSLBs)的理想候选材料。然而,它们仍然面临诸如阳极稳定性极限低以及与高压阴极活性材料的界面兼容性差等挑战。在此,我们通过在阴极活性材料表面形成稳定的含氟钝化界面,提出了一系列用于基于高压LiCoO(LCO)的ASSLBs的氟掺杂硫银锗矿型硫化物SSEs,即LiPSClF(LPSClF)(0 < x ≤ 1.5)。值得注意的是,氟的掺入将LPSClF的LPSCl实际氧化极限从2.4 V显著提高到3.5 V,同时保持3.3 mS cm的高室温离子电导率。这种增强归因于锂离子无序度的增加以及氟的高电负性。通过直接将LPSClF SSE与未涂覆的商用LCO阴极组装而成的ASSLBs,在4.3 V(相对于Li/Li)下表现出稳定的循环且极化电压低,在0.2 C下700次循环后容量保持率达到92.1%。值得注意的是,即使在4.6 V的高压条件下,我们的电池在300次循环中仍保持96.2%的容量保持率,这归因于在LCO表面形成了稳定的含氟阴极 - 电解质界面。当与锂金属阳极耦合时,Li|LPSClF|LCO ASSLB在4.6 V下实现了稳定循环,并在0.5 C下100次循环后提供了137 mAh g的容量。重要的是,在203.8 mg cm的超高质量负载LCO下循环的Si|LPSCl|LPSClF|LCO ASSLB表现出25.7 mAh cm的出色面积容量,证明了LPSClF SSE在实际高能ASSLBs中的巨大潜力。