Suppr超能文献

加速新型固态电解质的探索:利用机器学习辅助计算探索广阔的化学空间。

Accelerating the Search for New Solid Electrolytes: Exploring Vast Chemical Space with Machine Learning-Enabled Computational Calculations.

作者信息

Kim Jongseung, Mok Dong Hyeon, Kim Heejin, Back Seoin

机构信息

Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea.

Division of Analytical Science, Korea Basic Science Institute (KBSI), Yuseong-gu, Daejeon 34133, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2023 Nov 15;15(45):52427-52435. doi: 10.1021/acsami.3c10798. Epub 2023 Nov 4.

Abstract

Discovering new solid electrolytes (SEs) is essential to achieving higher safety and better energy density for all-solid-state lithium batteries. In this work, we report machine learning (ML)-assisted high-throughput virtual screening (HTVS) results to identify new SE materials. This approach expands the chemical space to explore by substituting elements of prototype structures and accelerates an evaluation of properties by applying various ML models. The screening results in a few candidate materials, which are validated by density functional theory calculations and ab initio molecular dynamics simulations. The shortlisted oxysulfide materials satisfy key properties to be successful SEs. The advanced screening method presented in this work will accelerate the discovery of energy materials for related applications.

摘要

发现新型固体电解质(SEs)对于实现全固态锂电池更高的安全性和更好的能量密度至关重要。在这项工作中,我们报告了机器学习(ML)辅助的高通量虚拟筛选(HTVS)结果,以识别新型SE材料。这种方法通过替换原型结构的元素来扩展可探索的化学空间,并通过应用各种ML模型加速性能评估。筛选产生了几种候选材料,这些材料通过密度泛函理论计算和从头算分子动力学模拟得到了验证。入围的氧硫化物材料满足了成为成功SEs的关键特性。这项工作中提出的先进筛选方法将加速相关应用中能量材料的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验