Zercher Benjamin P, Feng Yuan, Bush Matthew F
University of Washington Department of Chemistry, Box 351700, Seattle, WA 98195-1700.
Int J Mass Spectrom. 2024 Jan;495. doi: 10.1016/j.ijms.2023.117163. Epub 2023 Oct 17.
Increasing the dimensionality of ion mobility (IM) presents an enticing opportunity to increase the information content and selectivity of many analyses. However, for implementations of IM that use constant electrostatic gradients to separate ions in a buffer gas, technical challenges have limited the adoption of the technique and number of dimensions within individual experiments. Here, we introduce a strategy to "reset" the potentials of ions between IM dimensions. To achieve this, mobility-selected ions are trapped between dimensions of IM, using a combination of RF and electrostatic fields, while the subsequent dimension of IM is devoid of any drift field. By applying an incremental voltage ramp, the potential of the trapping region is elevated, simultaneously establishing the drift field in the subsequent dimension of IM. The trapped ions are then released and separated. We measured similar arrival-time distributions of protein ions using this strategy and a method without potential resetting, suggesting that potential resetting can be performed without additional losses or activation of ions. The findings of those experiments were corroborated by ion trajectory simulations, which exhibited a very small changes in ion position and no significant changes in effective temperatures during potential resetting. Finally, we demonstrate that IM information can be preserved during potential resetting by selecting subpopulations of 9+ cytochrome ions, resetting their potential, subjecting them to a second-dimension IM separation, and observing the retention of conformers within each subpopulation. We anticipate that this strategy will be useful for advancing flexible, multidimensional experiments on electrostatic IM instruments.
增加离子淌度(IM)的维度为增加许多分析的信息含量和选择性提供了一个诱人的机会。然而,对于使用恒定静电梯度在缓冲气体中分离离子的IM实现方式,技术挑战限制了该技术的应用以及单个实验中的维度数量。在此,我们引入一种策略来在IM维度之间“重置”离子的电势。为实现这一点,利用射频和静电场的组合,将迁移率选择的离子捕获在IM维度之间,而IM的后续维度没有任何漂移场。通过施加递增的电压斜坡,捕获区域的电势升高,同时在IM的后续维度中建立漂移场。然后释放并分离捕获的离子。我们使用这种策略和一种无电势重置的方法测量了蛋白质离子相似的到达时间分布,这表明可以在不造成额外离子损失或激活的情况下进行电势重置。这些实验的结果得到了离子轨迹模拟的证实,模拟显示在电势重置期间离子位置变化非常小,有效温度没有显著变化。最后,我们通过选择9 + 细胞色素离子的亚群、重置其电势、使其进行二维IM分离并观察每个亚群内构象体的保留情况,证明了在电势重置期间IM信息可以得到保留。我们预计这种策略将有助于推进静电IM仪器上灵活的多维实验。