Suppr超能文献

智慧城市中利用 XAI 和车辆路径优化的创新型医疗废物管理系统。

An innovative medical waste management system in a smart city using XAI and vehicle routing optimization.

机构信息

Engineering research laboratory (LRI), System Architecture Team (EAS), National and high school of electricity and mechanic (ENSEM), University Hassan II Casablanca, Casablanca, Grand Casablanca, Morocco.

Fondation de Recherche de Developpement et d'Innovation en Sciences et Ingenierie, Casablanca, Grand Casablanca, Morocco.

出版信息

F1000Res. 2023 Nov 21;12:1060. doi: 10.12688/f1000research.138867.1. eCollection 2023.

Abstract

BACKGROUND

The management of medical waste is a complex task that necessitates effective strategies to mitigate health risks, comply with regulations, and minimize environmental impact. In this study, a novel approach based on collaboration and technological advancements is proposed.

METHODS

By utilizing colored bags with identification tags, smart containers with sensors, object recognition sensors, air and soil control sensors, vehicles with Global Positioning System (GPS) and temperature humidity sensors, and outsourced waste treatment, the system optimizes waste sorting, storage, and treatment operations. Additionally, the incorporation of explainable artificial intelligence (XAI) technology, leveraging scikit-learn, xgboost, catboost, lightgbm, and skorch, provides real-time insights and data analytics, facilitating informed decision-making and process optimization.

RESULTS

The integration of these cutting-edge technologies forms the foundation of an efficient and intelligent medical waste management system. Furthermore, the article highlights the use of genetic algorithms (GA) to solve vehicle routing models, optimizing waste collection routes and minimizing transportation time to treatment centers.

CONCLUSIONS

Overall, the combination of advanced technologies, optimization algorithms, and XAI contributes to improved waste management practices, ultimately benefiting both public health and the environment.

摘要

背景

医疗废物管理是一项复杂的任务,需要采取有效的策略来降低健康风险、遵守法规并最大限度地减少环境影响。本研究提出了一种基于协作和技术进步的新方法。

方法

通过使用带有识别标签的彩色袋子、带有传感器的智能容器、物体识别传感器、空气和土壤控制传感器、带有全球定位系统(GPS)和温湿度传感器的车辆以及外包废物处理,该系统优化了废物分类、储存和处理操作。此外,可解释人工智能(XAI)技术的应用,利用 scikit-learn、xgboost、catboost、lightgbm 和 skorch,提供实时洞察和数据分析,促进决策和流程优化。

结果

这些前沿技术的整合构成了高效智能医疗废物管理系统的基础。此外,文章还强调了使用遗传算法(GA)解决车辆路径模型,优化废物收集路线并最小化运输时间到处理中心。

结论

总体而言,先进技术、优化算法和 XAI 的结合有助于改进废物管理实践,最终有益于公共卫生和环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验