Suppr超能文献

与减肥行为治疗同时进行的自动信息推送:定性研究

Automated Messaging Delivered Alongside Behavioral Treatment for Weight Loss: Qualitative Study.

作者信息

Berry Michael, Taylor Lauren, Huang Zhuoran, Chwyl Christina, Kerrigan Stephanie, Forman Evan

机构信息

Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, United States.

Center for Weight, Eating and Lifestyle Science, Drexel University, Philadelphia, PA, United States.

出版信息

JMIR Form Res. 2023 Nov 6;7:e50872. doi: 10.2196/50872.

Abstract

BACKGROUND

Mobile health interventions for weight loss frequently use automated messaging. However, this intervention modality appears to have limited weight loss efficacy. Furthermore, data on users' subjective experiences while receiving automated messaging-based interventions for weight loss are scarce, especially for more advanced messaging systems providing users with individually tailored, data-informed feedback.

OBJECTIVE

The purpose of this study was to characterize the experiences of individuals with overweight or obesity who received automated messages for 6-12 months as part of a behavioral weight loss trial.

METHODS

Participants (n=40) provided Likert-scale ratings of messaging acceptability and completed a structured qualitative interview (n=39) focused on their experiences with the messaging system and generating suggestions for improvement. Interview data were analyzed using thematic analysis.

RESULTS

Participants found the messages most useful for summarizing goal progress and least useful for suggesting new behavioral strategies. Overall message acceptability was moderate (2.67 out of 5). From the interviews, 2 meta-themes emerged. Participants indicated that although the messages provided useful reminders of intervention goals and skills, they did not adequately capture their lived experiences while losing weight.

CONCLUSIONS

Many participants found the automated messages insufficiently tailored to their personal weight loss experiences. Future studies should explore alternative methods for message tailoring (eg, allowing for a higher degree of participant input and interactivity) that may boost treatment engagement and efficacy.

TRIAL REGISTRATION

ClinicalTrials.gov NCT05231824; https://clinicaltrials.gov/study/NCT05231824.

摘要

背景

用于减肥的移动健康干预措施经常使用自动消息推送。然而,这种干预方式的减肥效果似乎有限。此外,关于用户在接受基于自动消息推送的减肥干预时的主观体验的数据很少,尤其是对于为用户提供个性化、数据驱动反馈的更先进的消息系统。

目的

本研究的目的是描述超重或肥胖个体在一项行为减肥试验中接受自动消息推送6至12个月的体验。

方法

参与者(n = 40)对消息的可接受性进行李克特量表评分,并完成了一项结构化定性访谈(n = 39),重点是他们对消息系统的体验并提出改进建议。使用主题分析法对访谈数据进行分析。

结果

参与者发现这些消息在总结目标进展方面最有用,而在建议新的行为策略方面最无用。总体消息可接受性为中等(5分制下为2.67分)。从访谈中出现了2个元主题。参与者表示,虽然这些消息提供了对干预目标和技能的有用提醒,但它们没有充分反映他们在减肥过程中的实际经历。

结论

许多参与者发现自动消息推送没有充分根据他们的个人减肥经历进行定制。未来的研究应该探索消息定制的替代方法(例如,允许更高程度的参与者输入和互动),这可能会提高治疗参与度和疗效。

试验注册

ClinicalTrials.gov NCT05231824;https://clinicaltrials.gov/study/NCT05231824

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ee9/10660236/efabfd8cc4ac/formative_v7i1e50872_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验