The Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114.
Department of Ophthalmology, Harvard Medical School, Boston, MA 02114.
Proc Natl Acad Sci U S A. 2023 Nov 14;120(46):e2302089120. doi: 10.1073/pnas.2302089120. Epub 2023 Nov 6.
Ongoing cell therapy trials have demonstrated the need for precision control of donor cell behavior within the recipient tissue. We present a methodology to guide stem cell-derived and endogenously regenerated neurons by engineering the microenvironment. Being an "approachable part of the brain," the eye provides a unique opportunity to study neuron fate and function within the central nervous system. Here, we focused on retinal ganglion cells (RGCs)-the neurons in the retina are irreversibly lost in glaucoma and other optic neuropathies but can potentially be replaced through transplantation or reprogramming. One of the significant barriers to successful RGC integration into the existing mature retinal circuitry is cell migration toward their natural position in the retina. Our in silico analysis of the single-cell transcriptome of the developing human retina identified six receptor-ligand candidates, which were tested in functional in vitro assays for their ability to guide human stem cell-derived RGCs. We used our lead molecule, SDF1, to engineer an artificial gradient in the retina, which led to a 2.7-fold increase in donor RGC migration into the ganglion cell layer (GCL) and a 3.3-fold increase in the displacement of newborn RGCs out of the inner nuclear layer. Only donor RGCs that migrated into the GCL were found to express mature RGC markers, indicating the importance of proper structure integration. Together, these results describe an "in silico-in vitro-in vivo" framework for identifying, selecting, and applying soluble ligands to control donor cell function after transplantation.
正在进行的细胞治疗试验表明,需要精确控制供体细胞在受体内组织中的行为。我们提出了一种通过工程微环境来指导干细胞衍生和内源性再生神经元的方法。眼睛是“大脑可接近的部分”,为研究中枢神经系统内神经元的命运和功能提供了独特的机会。在这里,我们专注于视网膜神经节细胞(RGCs)——在青光眼和其他视神经病变中,视网膜中的神经元不可逆转地丧失,但可以通过移植或重编程来替代。成功将 RGC 整合到现有的成熟视网膜回路中的一个重要障碍是细胞向其在视网膜中的自然位置迁移。我们对发育中的人类视网膜单细胞转录组进行了计算机分析,确定了六个受体-配体候选物,并在功能体外测定中测试了它们引导人干细胞衍生的 RGC 的能力。我们使用我们的先导分子 SDF1 在视网膜上构建人工梯度,导致供体 RGC 向神经节细胞层(GCL)迁移增加 2.7 倍,新生 RGC 从内核层向外迁移增加 3.3 倍。只有迁移到 GCL 的供体 RGC 被发现表达成熟的 RGC 标记物,这表明适当的结构整合的重要性。总之,这些结果描述了一种“计算机模拟-体外-体内”框架,用于鉴定、选择和应用可溶性配体来控制移植后供体细胞的功能。