Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
Department of Physiology and Biophysics, University of Washington, Seattle, WA 91895, USA.
Cell Rep. 2021 Oct 19;37(3):109857. doi: 10.1016/j.celrep.2021.109857.
Regenerative neuroscience aims to stimulate endogenous repair in the nervous system to replace neurons lost from degenerative diseases. Recently, we reported that overexpressing the transcription factor Ascl1 in Müller glia (MG) is sufficient to stimulate MG to regenerate functional neurons in the adult mouse retina. However, this process is inefficient, and only a third of the Ascl1-expressing MG generate new neurons. Here, we test whether proneural transcription factors of the Atoh1/7 class can further promote the regenerative capacity of MG. We find that the combination of Ascl1:Atoh1 is remarkably efficient at stimulating neurogenesis, even in the absence of retinal injury. Using electrophysiology and single-cell RNA sequencing (scRNA-seq), we demonstrate that Ascl1:Atoh1 generates a diversity of retinal neuron types, with the majority expressing characteristics of retinal ganglion cells. Our results provide a proof of principle that combinations of developmental transcription factors can substantially improve glial reprogramming to neurons and expand the repertoire of regenerated cell fates.
再生神经科学旨在刺激神经系统内源性修复,以替代因退行性疾病而丧失的神经元。最近,我们报告称,过表达转录因子 Ascl1 在 Müller 胶质细胞(MG)中足以刺激 MG 在成年小鼠视网膜中再生功能性神经元。然而,这个过程效率不高,只有三分之一的表达 Ascl1 的 MG 产生新的神经元。在这里,我们测试了 Atoh1/7 类的神经前体细胞转录因子是否可以进一步促进 MG 的再生能力。我们发现,Ascl1:Atoh1 的组合在刺激神经发生方面非常有效,即使在没有视网膜损伤的情况下也是如此。通过电生理学和单细胞 RNA 测序(scRNA-seq),我们证明了 Ascl1:Atoh1 产生了多种视网膜神经元类型,其中大多数表达视网膜神经节细胞的特征。我们的结果提供了一个原理证明,即发育转录因子的组合可以大大提高胶质细胞向神经元的重编程,并扩大再生细胞命运的范围。