Zhang Chunyu, Xu Fang, Wu Chengdong, Li Jinzhao
Faculty of Robot Science and Engineering, Northeastern University, Shenyang, China.
Shenyang Siasun Robot & Automation Company Ltd., Shenyang, China.
Front Comput Neurosci. 2023 Oct 23;17:1280640. doi: 10.3389/fncom.2023.1280640. eCollection 2023.
The current semantic segmentation algorithms suffer from encoding feature distortion and small object feature loss. Context information exchange can effectively address the feature distortion problem, but it has the issue of fixed spatial range. Maintaining the input feature resolution can reduce the loss of small object information but would slow down the network's operation speed. To tackle these problems, we propose a lightweight semantic segmentation network with configurable context and small object attention (CCSONet). CCSONet includes a long-short distance configurable context feature enhancement module (LSCFEM) and a small object attention decoding module (SOADM). The LSCFEM differs from the regular context exchange module by configuring long and short-range relevant features for the current feature, providing a broader and more flexible spatial range. The SOADM enhances the features of small objects by establishing correlations among objects of the same category, avoiding the introduction of redundancy issues caused by high-resolution features. On the Cityscapes and Camvid datasets, our network achieves the accuracy of 76.9 mIoU and 73.1 mIoU, respectively, while maintaining speeds of 87 FPS and 138 FPS. It outperforms other lightweight semantic segmentation algorithms in terms of accuracy.
当前的语义分割算法存在编码特征失真和小目标特征丢失的问题。上下文信息交换可以有效解决特征失真问题,但存在固定空间范围的问题。保持输入特征分辨率可以减少小目标信息的丢失,但会降低网络的运行速度。为了解决这些问题,我们提出了一种具有可配置上下文和小目标注意力的轻量级语义分割网络(CCSONet)。CCSONet包括一个长短距离可配置上下文特征增强模块(LSCFEM)和一个小目标注意力解码模块(SOADM)。LSCFEM与常规上下文交换模块的不同之处在于,它为当前特征配置了长距离和短距离相关特征,提供了更广泛、更灵活的空间范围。SOADM通过建立同一类别的对象之间的相关性来增强小目标的特征,避免了高分辨率特征引入的冗余问题。在Cityscapes和Camvid数据集上,我们的网络分别实现了76.9 mIoU和73.1 mIoU的准确率,同时保持了87 FPS和138 FPS的速度。在准确率方面,它优于其他轻量级语义分割算法。