He Jun-Yan, Liang Shi-Hua, Wu Xiao, Zhao Bo, Zhang Lei
IEEE Trans Image Process. 2021;30:7200-7214. doi: 10.1109/TIP.2021.3102509. Epub 2021 Aug 16.
Recent works on semantic segmentation witness significant performance improvement by utilizing global contextual information. In this paper, an efficient multi-granularity based semantic segmentation network (MGSeg) is proposed for real-time semantic segmentation, by modeling the latent relevance between multi-scale geometric details and high-level semantics for fine granularity segmentation. In particular, a light-weight backbone ResNet-18 is first adopted to produce the hierarchical features. Hybrid Attention Feature Aggregation (HAFA) is designed to filter the noisy spatial details of features, acquire the scale-invariance representation, and alleviate the gradient vanishing problem of the early-stage feature learning. After aggregating the learned features, Fine Granularity Refinement (FGR) module is employed to explicitly model the relationship between the multi-level features and categories, generating proper weights for fusion. More importantly, to meet the real-time processing, a series of light-weight strategies and simplified structures are applied to accelerate the efficiency, including light-weight backbone, channel compression, narrow neck structure, and so on. Extensive experiments conducted on benchmark datasets Cityscapes and CamVid demonstrate that the proposed method achieves the state-of-the-art performance, 77.8%@50fps and 72.7%@127fps on Cityscapes and CamVid datasets, respectively, having the capability for real-time applications.
近期关于语义分割的研究表明,利用全局上下文信息可显著提升性能。本文提出了一种高效的基于多粒度的语义分割网络(MGSeg)用于实时语义分割,通过对多尺度几何细节与高级语义之间的潜在相关性进行建模,以实现精细粒度分割。具体而言,首先采用轻量级主干网络ResNet-18来生成层次特征。设计了混合注意力特征聚合(HAFA)来过滤特征中的噪声空间细节,获取尺度不变表示,并缓解早期特征学习中的梯度消失问题。在聚合学习到的特征后,采用精细粒度细化(FGR)模块来明确建模多级特征与类别之间的关系,生成用于融合的适当权重。更重要的是,为满足实时处理需求,应用了一系列轻量级策略和简化结构来加速效率,包括轻量级主干网络、通道压缩、窄瓶颈结构等。在基准数据集Cityscapes和CamVid上进行的大量实验表明,所提出的方法取得了领先的性能,在Cityscapes和CamVid数据集上分别达到了77.8%@50fps和72.7%@127fps,具备实时应用的能力。