Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore.
Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
Carbohydr Polym. 2024 Jan 1;323:121443. doi: 10.1016/j.carbpol.2023.121443. Epub 2023 Sep 29.
Direct cytosolic delivery of the Cas9 ribonucleoprotein is the most promising method for inducing CRISPR-Cas9 genome editing in mammalian cells. Recently, we focused the movable properties of cyclodextrin-based polyrotaxanes (PRXs), which consist of numerous cyclodextrins threaded onto the axile molecule with bulky endcaps at both ends of the axile molecule, and developed aminated PRXs as multistep transformable carriers for Cas9 ribonucleoprotein, ensuring efficient complexation, cellular internalization, endosomal escape, release, and nuclear localization. This study reports the structural fine-tuning and structure-property relationship of multistep transformable PRXs for more efficient Cas9 ribonucleoprotein delivery. Among various PRXs, PRX derivatives with a longer molecular length (35 kDa polyethylene glycol as the axile molecule) and a low total degree of substitution (1.5 amino groups/α-cyclodextrins), as well as the modified ratio of two modified amines (cystamine and diethylenetriamine) = ≈1:1, exhibited the highest genome-editing efficacy and intracellular dynamics control. These structural properties are important for efficient endosomal escape and Cas9 RNP release. Furthermore, ligand-modified-β-CD, which can endow the ligand through complexation with PRX termini, improved the cellular uptake and genome-editing effects of the optimized PRX/Cas9 RNP in target cells. Thus, structural fine-tuning and the addition of ligand-modified-β-cyclodextrin enabled efficient genome editing by the Cas9 RNP.
直接将 Cas9 核糖核蛋白递送到细胞质中是在哺乳动物细胞中诱导 CRISPR-Cas9 基因组编辑最有前途的方法。最近,我们关注了基于环糊精的聚轮烷(PRX)的可移动特性,它由多个环糊精串在轴分子上,轴分子的两端都有大的端帽,我们开发了氨基化的 PRX 作为 Cas9 核糖核蛋白的多步可变形载体,以确保有效的复合物形成、细胞内化、内涵体逃逸、释放和核定位。本研究报告了多步可变形 PRX 的结构微调及其与 Cas9 核糖核蛋白更有效传递的结构-性能关系。在各种 PRX 中,分子长度较长(轴分子为 35 kDa 聚乙二醇)且总取代度较低(1.5 个氨基/α-环糊精)的 PRX 衍生物,以及两种改性胺(半胱胺和二乙烯三胺)的改性比≈1:1,表现出最高的基因组编辑效率和细胞内动力学控制。这些结构特性对于有效的内涵体逃逸和 Cas9 RNP 释放很重要。此外,配体修饰的-β-CD 可以通过与 PRX 末端的络合赋予配体,从而提高优化后的 PRX/Cas9 RNP 在靶细胞中的细胞摄取和基因组编辑效果。因此,结构的微调以及添加配体修饰的-β-环糊精使 Cas9 RNP 能够有效地进行基因组编辑。