文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米材料干扰乳酸代谢在肿瘤治疗中的最新进展。

Current Advances on Nanomaterials Interfering with Lactate Metabolism for Tumor Therapy.

机构信息

Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.

出版信息

Adv Sci (Weinh). 2024 Jan;11(3):e2305662. doi: 10.1002/advs.202305662. Epub 2023 Nov 8.


DOI:10.1002/advs.202305662
PMID:37941489
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10797484/
Abstract

Increasing numbers of studies have shown that tumor cells prefer fermentative glycolysis over oxidative phosphorylation to provide a vast amount of energy for fast proliferation even under oxygen-sufficient conditions. This metabolic alteration not only favors tumor cell progression and metastasis but also increases lactate accumulation in solid tumors. In addition to serving as a byproduct of glycolytic tumor cells, lactate also plays a central role in the construction of acidic and immunosuppressive tumor microenvironment, resulting in therapeutic tolerance. Recently, targeted drug delivery and inherent therapeutic properties of nanomaterials have attracted great attention, and research on modulating lactate metabolism based on nanomaterials to enhance antitumor therapy has exploded. In this review, the advanced tumor therapy strategies based on nanomaterials that interfere with lactate metabolism are discussed, including inhibiting lactate anabolism, promoting lactate catabolism, and disrupting the "lactate shuttle". Furthermore, recent advances in combining lactate metabolism modulation with other therapies, including chemotherapy, immunotherapy, photothermal therapy, and reactive oxygen species-related therapies, etc., which have achieved cooperatively enhanced therapeutic outcomes, are summarized. Finally, foreseeable challenges and prospective developments are also reviewed for the future development of this field.

摘要

越来越多的研究表明,肿瘤细胞即使在氧充足的条件下,也更喜欢通过发酵糖酵解而非氧化磷酸化来提供大量能量,以促进快速增殖。这种代谢改变不仅有利于肿瘤细胞的进展和转移,还会导致实体瘤中乳酸的积累增加。乳酸不仅作为糖酵解肿瘤细胞的副产物发挥作用,而且在构建酸性和免疫抑制性肿瘤微环境中发挥核心作用,导致治疗耐受。最近,靶向药物输送和纳米材料的固有治疗特性引起了极大关注,基于纳米材料调节乳酸代谢以增强抗肿瘤治疗的研究也如雨后春笋般涌现。本综述讨论了基于纳米材料干扰乳酸代谢的先进肿瘤治疗策略,包括抑制乳酸合成、促进乳酸分解和破坏“乳酸穿梭”。此外,还总结了最近在将乳酸代谢调节与其他治疗方法(包括化学疗法、免疫疗法、光热疗法和活性氧相关疗法等)相结合方面的进展,这些方法已取得协同增强的治疗效果。最后,还对该领域的未来发展进行了可预见的挑战和前瞻性展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/bc354df37ce1/ADVS-11-2305662-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/41a944eef605/ADVS-11-2305662-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/00d87e4bdc88/ADVS-11-2305662-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/a807d61e6321/ADVS-11-2305662-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/e7866d6de9ef/ADVS-11-2305662-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/173891db753c/ADVS-11-2305662-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/ea7df3733792/ADVS-11-2305662-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/c96634e6604e/ADVS-11-2305662-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/71d83826f3f0/ADVS-11-2305662-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/3b6cb8423d6c/ADVS-11-2305662-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/2390442696f8/ADVS-11-2305662-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/603c7edf85bf/ADVS-11-2305662-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/08dcd148becb/ADVS-11-2305662-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/1140288b74dc/ADVS-11-2305662-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/cc59ae3f82ab/ADVS-11-2305662-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/bc354df37ce1/ADVS-11-2305662-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/41a944eef605/ADVS-11-2305662-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/00d87e4bdc88/ADVS-11-2305662-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/a807d61e6321/ADVS-11-2305662-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/e7866d6de9ef/ADVS-11-2305662-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/173891db753c/ADVS-11-2305662-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/ea7df3733792/ADVS-11-2305662-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/c96634e6604e/ADVS-11-2305662-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/71d83826f3f0/ADVS-11-2305662-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/3b6cb8423d6c/ADVS-11-2305662-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/2390442696f8/ADVS-11-2305662-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/603c7edf85bf/ADVS-11-2305662-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/08dcd148becb/ADVS-11-2305662-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/1140288b74dc/ADVS-11-2305662-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/cc59ae3f82ab/ADVS-11-2305662-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20c/10797484/bc354df37ce1/ADVS-11-2305662-g002.jpg

相似文献

[1]
Current Advances on Nanomaterials Interfering with Lactate Metabolism for Tumor Therapy.

Adv Sci (Weinh). 2024-1

[2]
Harnessing bioactive nanomaterials in modulating tumor glycolysis-associated metabolism.

J Nanobiotechnology. 2022-12-12

[3]
The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.

Semin Cancer Biol. 2019-8-21

[4]
Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer.

Biofactors. 2022-3

[5]
Lactate in the tumour microenvironment: From immune modulation to therapy.

EBioMedicine. 2021-11

[6]
Lactate shuttle: from substance exchange to regulatory mechanism.

Hum Cell. 2022-1

[7]
Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors.

Biochim Biophys Acta Rev Cancer. 2020-12

[8]
Advances in Nanodelivery Systems Based on Metabolism Reprogramming Strategies for Enhanced Tumor Therapy.

ACS Appl Mater Interfaces. 2024-2-14

[9]
Targeting glycolysis for cancer therapy using drug delivery systems.

J Control Release. 2023-1

[10]
Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?

Acta Biomater. 2021-4-15

引用本文的文献

[1]
Lactate metabolic reprogramming and histone lactylation modification in sepsis.

Int J Biol Sci. 2025-7-28

[2]
Exercise-induced lactate suppresses ccRCC via CNDP2-mediated depletion of intracellular amino acids.

Cell Death Discov. 2025-7-31

[3]
Real-time magnetic resonance visualization of tumor acidosis as a precognition indicator of therapeutic efficacy.

Bioact Mater. 2025-6-4

[4]
Targeting TYROBP to influence the immune microenvironment and osteogenic differentiation of mesenchymal stem cells.

J Orthop Surg Res. 2025-5-28

[5]
PKM2 accelerated the progression of chronic fatigue syndrome via promoting the H4K12la/ NF-κB induced neuroinflammation and mitochondrial damage.

Sci Rep. 2025-3-28

[6]
An in- vitro measurement for the toxicity of peptides inhibit hexokinase II in breast cancer cell lines.

Sci Rep. 2025-3-27

[7]
Burning lactic acid: a road to revitalizing antitumor immunity.

Front Med. 2025-3-22

[8]
FAM50A as a novel prognostic marker modulates the proliferation of colorectal cancer cells via CylinA2/CDK2 pathway.

PLoS One. 2025-2-25

[9]
Selenium Electrophilic Center Responsive to Biological Electron Donors for Efficient Chemotherapy.

Adv Sci (Weinh). 2025-4

[10]
Targeting Metabolic Adaptation of Colorectal Cancer with Vanadium-Doped Nanosystem to Enhance Chemotherapy and Immunotherapy.

Adv Sci (Weinh). 2025-2

本文引用的文献

[1]
Metal-Phenolic Nanomedicines Regulate T-Cell Antitumor Function for Sono-Metabolic Cancer Therapy.

ACS Nano. 2023-8-8

[2]
Lactate Efflux Inhibition by Syrosingopine/LOD Co-Loaded Nanozyme for Synergetic Self-Replenishing Catalytic Cancer Therapy and Immune Microenvironment Remodeling.

Adv Sci (Weinh). 2023-9

[3]
Anti-tumor effects of novel alkannin derivatives with potent selectivity on comprehensive analysis.

Phytomedicine. 2023-8

[4]
Nitrogen-Centered Lactate Oxidase Nanozyme for Tumor Lactate Modulation and Microenvironment Remodeling.

J Am Chem Soc. 2023-5-10

[5]
Heterostructural Nanoadjuvant CuSe/CoSe for Potentiating Ferroptosis and Photoimmunotherapy through Intratumoral Blocked Lactate Efflux.

J Am Chem Soc. 2023-4-5

[6]
Nanoparticles for cancer therapy: a review of influencing factors and evaluation methods for biosafety.

Clin Transl Oncol. 2023-7

[7]
Lactate oxidase/catalase-displaying nanoparticles efficiently consume lactate in the tumor microenvironment to effectively suppress tumor growth.

J Nanobiotechnology. 2023-1-3

[8]
Insights into the Effect of Catalytic Intratumoral Lactate Depletion on Metabolic Reprogramming and Immune Activation for Antitumoral Activity.

Adv Sci (Weinh). 2023-2

[9]
A Biomimetic Metal-Organic Framework Nanosystem Modulates Immunosuppressive Tumor Microenvironment Metabolism to Amplify Immunotherapy.

J Control Release. 2023-1

[10]
Molecular Engines, Therapeutic Targets, and Challenges in Pediatric Brain Tumors: A Special Emphasis on Hydrogen Sulfide and RNA-Based Nano-Delivery.

Cancers (Basel). 2022-10-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索