文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

靶向TYROBP以影响间充质干细胞的免疫微环境和成骨分化。

Targeting TYROBP to influence the immune microenvironment and osteogenic differentiation of mesenchymal stem cells.

作者信息

Huang Liangkun, Pei Zijie, Zhang Tongyi, Zhang Ze, Sun Fengpo, Wen Liangyuan

机构信息

Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.

出版信息

J Orthop Surg Res. 2025 May 28;20(1):535. doi: 10.1186/s13018-025-05925-7.


DOI:10.1186/s13018-025-05925-7
PMID:40437576
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12117746/
Abstract

BACKGROUND: Lactate, as an end product of glycolysis, plays an important role in cellular metabolism and signal transduction, and recent studies have shown that it is closely related to cellular differentiation, but its potential role in osteogenic differentiation has not yet been fully investigated. METHODS: We obtained two datasets containing human mesenchymal stem cells and human osteoblasts, GSE12266 and GSE18043, from the GEO database, which contained a total of 14 samples with sequencing data, and searched for lactate metabolism-related genes from the Genecards database. Ten differentially expressed core genes related to lactate metabolism were identified by differential expression analysis, protein interaction network analysis, and correlation expression analysis, and determined to play a key role in osteogenic differentiation. The effects of hub genes on the immune microenvironment of osteogenic differentiation were explored by enrichment analysis and immune infiltration analysis, and the significant effects of the key gene TYRO Protein Tyrosine Kinase-Binding Protein(TYROBP) on the characterization of bone marrow mesenchymal stem cells (BMSCs) were experimentally verified, and it was determined by drug sensitivity analysis that TYROBP may be a regulatory target of certain drugs affecting osteogenic differentiation. RESULT: We successfully screened 10 differentially expressed hub genes related to lactate metabolism, and their area under the curve AUC values for predicting osteogenic differentiation were all highly favorable. Enrichment analysis showed that lactate metabolism may affect osteoblast differentiation through immune infiltration, and the immune infiltration results confirmed the strong association between hub genes and osteoblast immune infiltration status. It was verified that decreasing TYROBP expression promoted cell viability, proliferation and migration ability of BMSCs. Drug sensitivity analysis showed that TYROBP may be a major regulator of drug-induced MSC differentiation. CONCLUSION: Our study reveals the critical role of lactate metabolism in osteoblast differentiation, identifies the role of the key gene TYROBP in the regulation of BMSCs, and provides new insights for studies related to the regulation of osteoblast differentiation.

摘要

背景:乳酸作为糖酵解的终产物,在细胞代谢和信号转导中发挥重要作用,近期研究表明其与细胞分化密切相关,但其在成骨分化中的潜在作用尚未得到充分研究。 方法:我们从基因表达综合数据库(GEO数据库)中获取了两个包含人间充质干细胞和人成骨细胞的数据集GSE12266和GSE18043,其中共有14个带有测序数据的样本,并从基因卡片数据库中搜索与乳酸代谢相关的基因。通过差异表达分析、蛋白质相互作用网络分析和相关性表达分析,确定了10个与乳酸代谢相关的差异表达核心基因,它们在成骨分化中起关键作用。通过富集分析和免疫浸润分析探讨了枢纽基因对成骨分化免疫微环境的影响,并通过实验验证了关键基因酪氨酸蛋白酪氨酸激酶结合蛋白(TYROBP)对骨髓间充质干细胞(BMSC)特性的显著影响,通过药物敏感性分析确定TYROBP可能是某些影响成骨分化药物的调控靶点。 结果:我们成功筛选出10个与乳酸代谢相关的差异表达枢纽基因,它们预测成骨分化的曲线下面积(AUC)值都非常理想。富集分析表明,乳酸代谢可能通过免疫浸润影响成骨细胞分化,免疫浸润结果证实了枢纽基因与成骨细胞免疫浸润状态之间的强关联。证实降低TYROBP表达可促进BMSC的细胞活力、增殖和迁移能力。药物敏感性分析表明,TYROBP可能是药物诱导的间充质干细胞分化的主要调节因子。 结论:我们的研究揭示了乳酸代谢在成骨细胞分化中的关键作用,确定了关键基因TYROBP在BMSC调控中的作用,并为成骨细胞分化调控相关研究提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/ab01624f86a2/13018_2025_5925_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/16c89e321dc9/13018_2025_5925_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/6bb4e3d63a8c/13018_2025_5925_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/f65b4977a742/13018_2025_5925_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/c20b1ec30712/13018_2025_5925_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/b843d81a7956/13018_2025_5925_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/a6ec2d565cbb/13018_2025_5925_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/c0a9b8ce6dd3/13018_2025_5925_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/a8d03fdddea4/13018_2025_5925_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/c17b7a223b25/13018_2025_5925_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/91e9f80b1c2f/13018_2025_5925_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/d37b7f88248a/13018_2025_5925_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/5af2fdcd9a88/13018_2025_5925_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/ab01624f86a2/13018_2025_5925_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/16c89e321dc9/13018_2025_5925_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/6bb4e3d63a8c/13018_2025_5925_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/f65b4977a742/13018_2025_5925_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/c20b1ec30712/13018_2025_5925_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/b843d81a7956/13018_2025_5925_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/a6ec2d565cbb/13018_2025_5925_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/c0a9b8ce6dd3/13018_2025_5925_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/a8d03fdddea4/13018_2025_5925_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/c17b7a223b25/13018_2025_5925_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/91e9f80b1c2f/13018_2025_5925_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/d37b7f88248a/13018_2025_5925_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/5af2fdcd9a88/13018_2025_5925_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aed/12117746/ab01624f86a2/13018_2025_5925_Fig13_HTML.jpg

相似文献

[1]
Targeting TYROBP to influence the immune microenvironment and osteogenic differentiation of mesenchymal stem cells.

J Orthop Surg Res. 2025-5-28

[2]
2P-FLIM unveils time-dependent metabolic shifts during osteogenic differentiation with a key role of lactate to fuel osteogenesis via glutaminolysis identified.

Stem Cell Res Ther. 2023-12-12

[3]
Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells.

Colloids Surf B Biointerfaces. 2017-6-1

[4]
miR-34a-5p facilitates osteogenic differentiation of bone marrow mesenchymal stem cells and modulates bone metabolism by targeting HDAC1 and promoting ER-α transcription.

Connect Tissue Res. 2023-3

[5]
Facile distribution of an alkaline microenvironment improves human bone marrow mesenchymal stem cell osteogenesis on a titanium surface through the ITG/FAK/ALP pathway.

Int J Implant Dent. 2021-6-28

[6]
The Role and Mechanism of Exosomes from Umbilical Cord Mesenchymal Stem Cells in Inducing Osteogenesis and Preventing Osteoporosis.

Cell Transplant. 2021

[7]
Semaphorin3B Promotes Proliferation and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in a High-Glucose Microenvironment.

Stem Cells Int. 2021-2-26

[8]
The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments.

Differentiation. 2014

[9]
MiR-125b Regulates the Osteogenic Differentiation of Human Mesenchymal Stem Cells by Targeting BMPR1b.

Cell Physiol Biochem. 2017

[10]
LINC01119 negatively regulates osteogenic differentiation of mesenchymal stem cells via the Wnt pathway by targeting FZD4.

Stem Cell Res Ther. 2022-1-29

本文引用的文献

[1]
TREM2 protects against LPS-induced murine acute lung injury through suppressing macrophage ferroptosis.

Int Immunopharmacol. 2025-3-26

[2]
Tyrobp deficiency blocks NLRP3-mediated inflammation and pyroptosis to alleviate myocardial ischemia-reperfusion injury through regulating Syk.

Tissue Cell. 2024-12

[3]
Hyperbaric oxygen promotes bone regeneration by activating the mechanosensitive Piezo1 pathway in osteogenic progenitors.

J Orthop Translat. 2024-7-25

[4]
Lactate and lactylation in cardiovascular diseases: current progress and future perspectives.

Metabolism. 2024-9

[5]
Glycolysis inhibition induces anti-tumor central memory CD8T cell differentiation upon combination with microwave ablation therapy.

Nat Commun. 2024-5-31

[6]
Exploring gene regulatory interaction networks and predicting therapeutic molecules for hypopharyngeal cancer and EGFR-mutated lung adenocarcinoma.

FEBS Open Bio. 2024-7

[7]
Emerging roles of lactate in acute and chronic inflammation.

Cell Commun Signal. 2024-5-16

[8]
Synthetic biology-based bacterial extracellular vesicles displaying BMP-2 and CXCR4 to ameliorate osteoporosis.

J Extracell Vesicles. 2024-4

[9]
Histone lactylation: from tumor lactate metabolism to epigenetic regulation.

Int J Biol Sci. 2024

[10]
Glycolysis-Stimulated Esrrb Lactylation Promotes the Self-Renewal and Extraembryonic Endoderm Stem Cell Differentiation of Embryonic Stem Cells.

Int J Mol Sci. 2024-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索