Suppr超能文献

一种基于融合基因的评分系统,用于预测非急性早幼粒细胞白血病小儿急性髓系白血病的治疗结果。

A scoring system based on fusion genes to predict treatment outcomes of the non-acute promyelocytic leukemia pediatric acute myeloid leukemia.

作者信息

Weng Wenwen, Chen Yanfei, Wang Yuwen, Ying Peiting, Guo Xiaoping, Ruan Jinfei, Song Hua, Xu Weiqun, Zhang Jingying, Xu Xiaojun, Tang Yongmin

机构信息

Division/Center of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.

The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China.

出版信息

Front Med (Lausanne). 2023 Oct 24;10:1258038. doi: 10.3389/fmed.2023.1258038. eCollection 2023.

Abstract

BACKGROUND

Fusion genes are considered to be one of the major drivers behind cancer initiation and progression. Meanwhile, non-acute promyelocytic leukemia (APL) pediatric patients with acute myeloid leukemia (AML) in children had limited treatment efficacy. Hence, we developed and validated a simple clinical scoring system for predicting outcomes in non-APL pediatric patients with AML.

METHOD

A total of 184 non-APL pediatric patients with AML who were admitted to our hospital and an independent dataset (318 patients) from the TARGET database were included. Least absolute shrinkage and selection operation (LASSO) and Cox regression analysis were used to identify prognostic factors. Then, a nomogram score was developed to predict the 1, 3, and 5 years overall survival (OS) based on their clinical characteristics and fusion genes. The accuracy of the nomogram score was determined by calibration curves and receiver operating characteristic (ROC) curves. Additionally, an internal verification cohort was used to assess its applicability.

RESULTS

Based on Cox and LASSO regression analyses, a nomogram score was constructed using clinical characteristics and OS-related fusion genes (, , , and ), yielded good calibration and concordance for predicting OS of non-APL pediatric patients with AML. Furthermore, patients with higher scores exhibited worse outcomes. The nomogram score also demonstrated good discrimination and calibration in the whole cohort and internal validation. Furthermore, artificial neural networks demonstrated that this nomogram score exhibits good predictive performance.

CONCLUSION

Our model based on the fusion gene is a prognostic biomarker for non-APL pediatric patients with AML. The nomogram score can provide personalized prognosis prediction, thereby benefiting clinical decision-making.

摘要

背景

融合基因被认为是癌症发生和发展的主要驱动因素之一。同时,儿童急性髓系白血病(AML)中非急性早幼粒细胞白血病(APL)患儿的治疗效果有限。因此,我们开发并验证了一种简单的临床评分系统,用于预测非APL儿童AML患者的预后。

方法

纳入我院收治的184例非APL儿童AML患者以及来自TARGET数据库的独立数据集(318例患者)。采用最小绝对收缩和选择算子(LASSO)及Cox回归分析来识别预后因素。然后,根据患者的临床特征和融合基因制定列线图评分,以预测1年、3年和5年总生存率(OS)。通过校准曲线和受试者工作特征(ROC)曲线确定列线图评分的准确性。此外,使用内部验证队列评估其适用性。

结果

基于Cox和LASSO回归分析,利用临床特征和与OS相关的融合基因( 、 、 和 )构建了列线图评分,在预测非APL儿童AML患者的OS方面具有良好的校准和一致性。此外,评分较高的患者预后较差。列线图评分在整个队列和内部验证中也表现出良好的区分度和校准性。此外,人工神经网络表明该列线图评分具有良好的预测性能。

结论

我们基于融合基因的模型是预测非APL儿童AML患者预后的生物标志物。列线图评分可为个性化预后预测提供依据,从而有助于临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验