Zheng Shuang, Tan Weijiang, Li Xiang, Wang Lijing, Zhu Caiyi, Pyle W Glen, Chen Jianxin, Wu Jian, Ren Xuecong, Chen Honghua, Zou Yunzeng, Backx Peter H, Yang Feng Hua
Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
Front Pharmacol. 2023 Oct 24;14:1145413. doi: 10.3389/fphar.2023.1145413. eCollection 2023.
While the protective effects of n-3 polyunsaturated fatty acids (PUFAs) on cardiac ischemia-reperfusion (IR) injury have been previously reported, limited data are available regarding how these fatty acids affect membrane receptors and their downstream signaling following IR injury. We aimed to identify potential receptors activated by n-3 PUFAs in IR hearts to understand the regulatory mechanisms of these receptors. We used mice, which naturally have elevated levels of n-3 PUFAs, and C57BL/6J mice as a control group to create a myocardial IR injury model through Langendorff perfusion. We assessed the impact of endogenous n-3 PUFAs on left ventricular function, myocardial infarct size, myocardial apoptosis, and ATP production. RNA sequencing (RNA-seq) and bioinformatics analysis were conducted to identify molecular targets affected by n-3 PUFAs. Based on these analyses we then treated IR hearts of WT and mice with an antagonist (ML221) or an agonist (apelin-13) for the predicted receptor to assess cardiac contractile function and intracellular signaling pathways. An hypoxia-reoxygenation (HR) model was also used to confirm the effects of n-3 PUFAs on the examined intracellular signaling pathways. Endogenous n-3 PUFAs protected cardiac structure and function in post-IR hearts, and modulated phosphorylation patterns in the PI3K-AKT-mTOR signaling pathways. RNA-seq analysis revealed that n-3 PUFAs affected multiple biological processes as well as levels of the apelin receptor (APLNR). Consistent with a role for the PLNNR, ML221 synchronized the activation of the PI3K-AKT-mTOR signaling axis, suppressed the expression of PKCδ and phosphorylated p38α, upregulated PKCε expression, upregulated or restored the phosphorylation of myofilaments, and prevented myocardial injury and contractile dysfunction in WT IR hearts. By contrast, apelin-13 disrupted the PI3K-AKT-mTOR signaling axis in post-IR hearts. The phosphorylation signaling targeted by APLNR inhibition in post-IR hearts was also observed after treating HR cells with eicosatetraenoic acid (EPA). Endogenous n-3 PUFAs protect against post-IR injury and preserve cardiac contractile function possibly through APLNR inhibition. This inhibition synchronizes the PI3K-AKT-mTOR axis, suppresses detrimental phosphorylation signaling, and restores or increases myofilament phosphorylation in post-IR hearts. The beneficial effects observed in transgenic mouse hearts can be attributed, at least in part, to elevated EPA levels. This study is the first to demonstrate that n-3 PUFAs protect hearts against IR injury through APLNR inhibition.
虽然此前已有报道称n-3多不饱和脂肪酸(PUFAs)对心脏缺血再灌注(IR)损伤具有保护作用,但关于这些脂肪酸在IR损伤后如何影响膜受体及其下游信号传导的数据有限。我们旨在确定IR心脏中被n-3 PUFAs激活的潜在受体,以了解这些受体的调节机制。我们使用自然富含n-3 PUFAs的小鼠和C57BL/6J小鼠作为对照组,通过Langendorff灌注建立心肌IR损伤模型。我们评估了内源性n-3 PUFAs对左心室功能、心肌梗死面积、心肌细胞凋亡和ATP生成的影响。进行了RNA测序(RNA-seq)和生物信息学分析,以确定受n-3 PUFAs影响的分子靶点。基于这些分析,我们随后用预测受体的拮抗剂(ML221)或激动剂(apelin-13)处理野生型(WT)和[具体小鼠品系未提及]小鼠的IR心脏,以评估心脏收缩功能和细胞内信号通路。还使用缺氧复氧(HR)模型来证实n-3 PUFAs对所检测的细胞内信号通路的影响。内源性n-3 PUFAs保护IR后心脏的结构和功能,并调节PI3K-AKT-mTOR信号通路中的磷酸化模式。RNA-seq分析表明,n-3 PUFAs影响多个生物学过程以及apelin受体(APLNR)的水平。与APLNR的作用一致,ML221使PI3K-AKT-mTOR信号轴的激活同步,抑制PKCδ和磷酸化p38α的表达,上调PKCε的表达,上调或恢复肌丝的磷酸化,并预防WT IR心脏中的心肌损伤和收缩功能障碍。相比之下,apelin-13破坏了IR后[具体小鼠品系未提及]心脏中的PI3K-AKT-mTOR信号轴。在用二十碳四烯酸(EPA)处理HR细胞后,也观察到了IR后[具体小鼠品系未提及]心脏中APLNR抑制所靶向的磷酸化信号。内源性n-3 PUFAs可能通过抑制APLNR来预防IR后损伤并维持心脏收缩功能。这种抑制使PI3K-AKT-mTOR轴同步,抑制有害的磷酸化信号,并恢复或增加IR后心脏中肌丝的磷酸化。在[具体小鼠品系未提及]转基因小鼠心脏中观察到的有益作用至少部分可归因于EPA水平的升高。本研究首次证明n-3 PUFAs通过抑制APLNR保护心脏免受IR损伤。