Yu Hanzhi, Hu Mengyu, Chen Chong, Hu Changjiang, Li Qiuhao, Hu Feng, Peng Shengjie, Ma Jun
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China.
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, P. R. China.
Angew Chem Int Ed Engl. 2023 Dec 21;62(52):e202314569. doi: 10.1002/anie.202314569. Epub 2023 Nov 22.
Developing novel synthesis technologies is crucial to expanding bifunctional electrocatalysts for energy-saving hydrogen production. Herein, we report an ambient and controllable γ-ray radiation reduction to synthesize a series of noble metal nanoparticles anchored on defect-rich manganese oxides (M@MnO , M=Ru, Pt, Pd, Ir) for glycerol-assisted H evolution. Benefiting from the strong penetrability of γ-rays, nanoparticles and defect supports are formed simultaneously and bridged by metal-oxygen bonds, guaranteeing structural stability and active site exposure. The special Ru-O-Mn bonds activate the Ru and Mn sites in Ru@MnO through strong interfacial coordination, driving glycerol electrolysis at low overpotential. Furthermore, only a low cell voltage of 1.68 V is required to achieve 0.5 A cm in a continuous-flow electrolyzer system along with excellent stability. In situ spectroscopic analysis reveals that the strong interfacial coordination in Ru@MnO balances the competitive adsorption of glycerol and OH* on the catalyst surface. Theoretical calculations further demonstrate that the defect-rich MnO support promotes the dissociation of H O, while the defect-regulated Ru sites promote deprotonation and hydrogen desorption, synergistically enhancing glycerol-assisted hydrogen production.
开发新型合成技术对于扩展用于节能制氢的双功能电催化剂至关重要。在此,我们报道了一种在环境条件下可控的γ射线辐射还原法,用于合成一系列负载在富含缺陷的锰氧化物(M@MnO ,M = Ru、Pt、Pd、Ir)上的贵金属纳米颗粒,以实现甘油辅助析氢。得益于γ射线的强穿透性,纳米颗粒和缺陷载体同时形成,并通过金属 - 氧键连接,确保了结构稳定性和活性位点的暴露。特殊的Ru - O - Mn键通过强界面配位作用激活了Ru@MnO中的Ru和Mn位点,从而在低过电位下驱动甘油电解。此外,在连续流电解槽系统中,仅需1.68 V的低电池电压就能实现0.5 A cm ,同时具有出色的稳定性。原位光谱分析表明,Ru@MnO中强大的界面配位作用平衡了甘油和OH*在催化剂表面的竞争吸附。理论计算进一步证明,富含缺陷的MnO载体促进了H O的解离,而缺陷调控的Ru位点促进了去质子化和氢脱附,协同增强了甘油辅助制氢。