Medical University of South Carolina and the Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, South Carolina, USA.
The Ohio State University, Columbus, Ohio, USA.
JACC Heart Fail. 2024 Jan;12(1):182-196. doi: 10.1016/j.jchf.2023.09.014. Epub 2023 Nov 8.
The authors tested the hypothesis that physiological information from sensors within a minimally invasive, subcutaneous, insertable cardiac monitor (ICM) could be used to develop an ambulatory heart failure risk score (HFRS) to accurately identify heart failure (HF) patients, across the ejection fraction spectrum, at high risk of an impending worsening heart failure event (HFE).
The purpose of this study was to examine performance of ICM-based, multiparameter, dynamic HFRS to predict HFEs in patients with NYHA functional class II/III HF.
In 2 observational cohorts, HF patients were implanted with an ICM; subcutaneous impedance, respiratory rate, heart rate and variability, atrial fibrillation burden, ventricular rate during atrial fibrillation, and activity duration were combined into an HFRS to identify the probability of HFE within 30 days. Patients and providers were blinded to the data. HFRS sensitivity and unexplained detection rate were defined in 2 independent patient population data sets. HFEs were defined as hospitalization, observation unit, or emergency department visit with a primary diagnosis of HF, and intravenous diuretic treatment.
First data set (development): 42 patients had 19 HFE; second data set (validation): 94 patients had 19 HFE (mean age 66 ± 11 years, 63% men, 50% with LVEF ≥40%, 80% NYHA functional class III). Using a high-risk threshold = 7.5%, development and validation data sets: sensitivity was 73.7% and 68.4%; unexplained detection rate of 1.4 and 1.5 per patient-year; median 47 and 64 days early warning before HFE.
ICM-HFRS provides a multiparameter, integrated diagnostic method with the ability to identify when HF patients are at increased risk of heart failure events. (Reveal LINQ Evaluation of Fluid [REEF]; NCT02275923, Reveal LINQ Heart Failure [LINQ HF]; NCT02758301, Algorithm Using LINQ Sensors for Evaluation and Treatment of Heart Failure [ALLEVIATE-HF]; NCT04452149).
作者检验了一个假设,即微创皮下可插入心脏监测器(ICM)内传感器的生理信息可用于开发一个可活动的心力衰竭风险评分(HFRS),以准确识别射血分数谱范围内心力衰竭(HF)患者,这些患者处于即将发生心力衰竭恶化事件(HFE)的高风险中。
本研究的目的是检查基于 ICM 的多参数动态 HFRS 在 NYHA 功能分级 II/III 级 HF 患者中预测 HFE 的性能。
在 2 个观察队列中,HF 患者植入了 ICM;将皮下阻抗、呼吸率、心率和变异性、房颤负担、房颤期间心室率和活动持续时间组合成一个 HFRS,以确定 30 天内发生 HFE 的概率。患者和提供者对数据均不知情。在 2 个独立的患者人群数据集,定义了 HFRS 的敏感性和未解释的检出率。HFEs 定义为因 HF 为主要诊断而住院、观察病房或急诊就诊,以及静脉使用利尿剂治疗。
第一个数据集(开发):42 例患者有 19 例 HFE;第二个数据集(验证):94 例患者有 19 例 HFE(平均年龄 66 ± 11 岁,63%为男性,50%LVEF≥40%,80%NYHA 功能分级 III)。使用高风险阈值=7.5%,开发和验证数据集的敏感性分别为 73.7%和 68.4%;未解释的检出率为每个患者每年 1.4 和 1.5 次;中位预警时间为 HFE 前 47 和 64 天。
ICM-HFRS 提供了一种多参数、综合诊断方法,能够识别 HF 患者何时处于 HF 事件风险增加的状态。(Reveal LINQ Evaluation of Fluid [REEF];NCT02275923,Reveal LINQ Heart Failure [LINQ HF];NCT02758301,Algorithm Using LINQ Sensors for Evaluation and Treatment of Heart Failure [ALLEVIATE-HF];NCT04452149)。