Suppr超能文献

利用机器学习技术从 3D 图像预测泽西奶牛的体况。

Prediction of body condition in Jersey dairy cattle from 3D-images using machine learning techniques.

机构信息

Center for Quantitative Genetics and Genomics, Aarhus University, 8000-Aarhus C, Denmark.

Viking Genetics, Assentoft, 8960-Randers, Denmark.

出版信息

J Anim Sci. 2023 Jan 3;101. doi: 10.1093/jas/skad376.

Abstract

The body condition of dairy cows is a crucial health and welfare indicator that is widely acknowledged. Dairy herds with a well-management body condition tend to have more fertile and functional cows. Therefore, routine recording of high-quality body condition phenotypes is required. Automated prediction of body condition from 3D images can be a cost-effective approach to current manual recording by technicians. Using 3D-images, we aimed to build a reliable prediction model of body condition for Jersey cows. The dataset consisted of 808 individual Jersey cows with 2,253 phenotypes from three herds in Denmark. Body condition was scored on a 1 to 9 scale and transformed into a 1 to 5 scale with 0.5-unit differences. The cows' back images were recorded using a 3D camera (Microsoft Xbox One Kinect v2). We used contour and back height features from 3D-images as predictors, together with class predictors (evaluator, herd, evaluation round, parity, lactation week). The performance of machine learning algorithms was assessed using H2O AutoML algorithm (h2o.ai). Based on outputs from AutoML, DeepLearning (DL; multi-layer feedforward artificial neural network) and Gradient Boosting Machine (GBM) algorithms were implemented for classification and regression tasks and compared on prediction accuracy. In addition, we compared the Partial Least Square (PLS) method for regression. The training and validation data were divided either through a random 7:3 split for 10 replicates or by allocating two herds for training and one herd for validation. The accuracy of classification models showed the DL algorithm performed better than the GBM algorithm. The DL model achieved a mean accuracy of 48.1% on the exact phenotype and 93.5% accuracy with a 0.5-unit deviation. The performances of PLS and DL regression methods were comparable, with mean coefficient of determination of 0.67 and 0.66, respectively. When we used data from two herds for training and the third herd as validation, we observed a slightly decreased prediction accuracy compared to the 7:3 split of the dataset. The accuracies for DL and PLS in the herd validation scenario were > 38% on the exact phenotype and > 87% accuracy with 0.5-unit deviation. This study demonstrates the feasibility of a reliable body condition prediction model in Jersey cows using 3D-images. The approach developed can be used for reliable and frequent prediction of cows' body condition to improve dairy farm management and genetic evaluations.

摘要

奶牛的身体状况是一个重要的健康和福利指标,这是被广泛认可的。身体状况管理良好的奶牛群往往拥有更多的高产和功能正常的奶牛。因此,需要对高质量的身体状况表型进行常规记录。通过 3D 图像自动预测奶牛的身体状况可能是一种比当前技术人员手动记录更具成本效益的方法。本研究使用 3D 图像,旨在为泽西奶牛建立一个可靠的身体状况预测模型。该数据集由丹麦三个牛群的 808 头个体泽西奶牛的 2253 个表型组成。身体状况评分范围为 1 到 9 分,转换为 1 到 5 分,分数间隔为 0.5 分。奶牛的背部图像使用 3D 相机(Microsoft Xbox One Kinect v2)拍摄。我们使用 3D 图像的轮廓和背部高度特征作为预测因子,同时使用类别预测因子(评估员、牛群、评估轮次、胎次、泌乳周)。使用 H2O AutoML 算法(h2o.ai)评估机器学习算法的性能。根据 AutoML 的输出,实施了深度学习(DL;多层前馈人工神经网络)和梯度提升机(GBM)算法用于分类和回归任务,并比较了预测准确性。此外,我们比较了偏最小二乘法(PLS)回归方法。训练和验证数据通过随机 7:3 分割进行 10 次重复,或者通过分配两个牛群进行训练和一个牛群进行验证进行分割。分类模型的准确性表明,DL 算法的表现优于 GBM 算法。DL 模型在精确表型上的平均准确率为 48.1%,在 0.5 个单位偏差下的准确率为 93.5%。PLS 和 DL 回归方法的性能相当,决定系数的平均值分别为 0.67 和 0.66。当我们使用两个牛群的数据进行训练,第三个牛群作为验证时,与数据集的 7:3 分割相比,预测准确性略有下降。在牛群验证场景中,DL 和 PLS 的准确率在精确表型上均大于 38%,在 0.5 个单位偏差下的准确率大于 87%。本研究证明了使用 3D 图像在泽西奶牛中建立可靠的身体状况预测模型的可行性。所开发的方法可用于可靠和频繁地预测奶牛的身体状况,以改善奶牛场管理和遗传评估。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验