Bonnefond Sylvain, Reynaud Antoine, Cazareth Julie, Abélanet Sophie, Vassalli Massimo, Brau Frédéric, Lippi Gian Luca
Université Côte d'Azur, UMR 7010 CNRS, Institut de Physique de Nice, 06560 Valbonne, France.
Université Côte d'Azur, UMR 7275 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
Nanomaterials (Basel). 2023 Oct 30;13(21):2875. doi: 10.3390/nano13212875.
Weak fluorescence signals, which are important in research and applications, are often masked by the background. Different amplification techniques are actively investigated. Here, a broadband, geometry-independent and flexible feedback scheme based on the random scattering of dielectric nanoparticles allows the amplification of a fluorescence signal by partial trapping of the radiation within the sample volume. Amplification of up to a factor of 40 is experimentally demonstrated in ultrapure water with dispersed TiO2 nanoparticles (30 to 50 nm in diameter) and fluorescein dye at 200 μmol concentration (pumped with 5 ns long, 3 mJ laser pulses at 490 nm). The measurements show a measurable reduction in linewidth at the emission peak, indicating that feedback-induced stimulated emission contributes to the large gain observed.
在研究和应用中很重要的微弱荧光信号常常被背景所掩盖。人们正在积极研究不同的放大技术。在此,基于介电纳米颗粒的随机散射的宽带、与几何形状无关且灵活的反馈方案,通过将辐射部分捕获在样品体积内实现了荧光信号的放大。在含有直径为30至50纳米的分散二氧化钛纳米颗粒和浓度为200微摩尔的荧光素染料的超纯水中(用490纳米、5纳秒长、3毫焦的激光脉冲泵浦),通过实验证明放大倍数高达40倍。测量结果表明发射峰处的线宽有可测量的减小,这表明反馈诱导的受激发射促成了所观察到的大增益。