Lu Song, Mazur Michal, Guo Kun, Stoian Dragos Constantin, Gu Minfen, Tucho Wakshum Mekonnen, Yu Zhixin
Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger, 4036, Norway.
Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 2, 12843, Czech Republic.
Small. 2024 Mar;20(13):e2309251. doi: 10.1002/smll.202309251. Epub 2023 Nov 10.
Conversion of CO into value-added products by electrocatalysis provides a promising way to mitigate energy and environmental problems. However, it is greatly limited by the scaling relationship between the adsorption strength of intermediates. Herein, Mn and Ni single-atom catalysts, homonuclear dual-atom catalysts (DACs), and heteronuclear DACs are synthesized. Aberration-corrected annular dark-field scanning transmission electron microscopy (ADF-STEM) and X-ray absorption spectroscopy characterization uncovered the existence of the Mn─Ni pair in Mn─Ni DAC. X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy reveal that Mn donated electrons to Ni atoms in Mn─Ni DAC. Consequently, Mn─Ni DAC displays the highest CO Faradaic efficiency of 98.7% at -0.7 V versus reversible hydrogen electrode (vs RHE) with CO partial current density of 16.8 mA cm. Density functional theory calculations disclose that the scaling relationship between the binding strength of intermediates is broken, resulting in superior performance for ECR to CO over Mn─Ni─NC catalyst.
通过电催化将一氧化碳转化为增值产品为缓解能源和环境问题提供了一条很有前景的途径。然而,它受到中间体吸附强度之间的比例关系的极大限制。在此,合成了锰和镍单原子催化剂、同核双原子催化剂(DACs)和异核DACs。经像差校正的环形暗场扫描透射电子显微镜(ADF-STEM)和X射线吸收光谱表征揭示了Mn─Ni DAC中存在Mn─Ni对。X射线光电子能谱和X射线吸收近边光谱表明,在Mn─Ni DAC中Mn向Ni原子提供电子。因此,相对于可逆氢电极(vs RHE),Mn─Ni DAC在-0.7 V时显示出最高的CO法拉第效率,为98.7%,CO分电流密度为16.8 mA cm。密度泛函理论计算表明,中间体结合强度之间的比例关系被打破,导致在将CO电催化还原为增值产品方面相对于Mn─Ni─NC催化剂具有优异的性能。