STATE INSTITUTION OF SCIENCE «RESEARCH AND PRACTICAL CENTER OF PREVENTIVE AND CLINICAL MEDICINE» STATE ADMINISTRATIVE DEPARTMENT, KYIV, UKRAINE.
STATE INSTITUTION OF SCIENCE «RESEARCH AND PRACTICAL CENTER OF PREVENTIVE AND CLINICAL MEDICINE» STATE ADMINISTRATIVE DEPARTMENT, KYIV, UKRAINE; NATIONAL TECHNICAL UNIVERSITY OF UKRAINE «IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE», KYIV, UKRAINE.
Wiad Lek. 2023;76(10):2295-2301. doi: 10.36740/WLek202310125.
The aim: To substantiate the use of data on patients' lifestyle, parameters of blood glucose, heart rate, blood pressure and bread units to build a mathematical model for predicting fasting blood glucose level in diabetes mellitus patients to improve existing measures for diabetes prevention.
Materials and methods: An open database consisting of the studied parameters of 359 people was used in the research. The linear regression method was used to predict fasting blood glucose level in diabetes mellitus patients. The statistical software IBM SPSS Statistics Version 23 was chosen for calculations.
Results: To calculate the coefficients of the linear regression equation, stepwise elimination of parameters was chosen. The analysis of the coefficients of influence of independent variables on dependent showed that the greatest effect on the change in glucose level had value of consumed bread units. The model for women diagnosed with type 2 diabetes showed the highest accuracy.
Conclusions: Mathematical modeling made it clear that any malnutrition or health disorders can lead to a significant change in glucose levels. The obtained models consist of a number of parameters, some of which might depend on the presence of concomitant diseases. Further studies should focus on the optimal combination of various parameters taking into account methods of treating comorbidities.
为了证实使用患者生活方式、血糖参数、心率、血压和面包单位的数据来建立预测糖尿病患者空腹血糖水平的数学模型,以改进现有的糖尿病预防措施。
研究使用了一个由 359 人研究参数组成的开放数据库。使用线性回归方法预测糖尿病患者的空腹血糖水平。选择 IBM SPSS Statistics Version 23 统计软件进行计算。
为了计算线性回归方程的系数,选择逐步消除参数。对自变量对因变量影响的系数分析表明,消耗的面包单位值对血糖水平的变化影响最大。诊断为 2 型糖尿病的女性的模型显示出最高的准确性。
数学建模清楚地表明,任何营养不良或健康障碍都可能导致血糖水平的显著变化。所获得的模型由多个参数组成,其中一些参数可能取决于合并症的存在。进一步的研究应集中在考虑治疗合并症的方法的基础上,优化各种参数的最佳组合。