Guth Florian M, Lindner Frederick, Rydzek Simon, Peil Andreas, Friedrich Steffen, Hauer Bernhard, Hahn Frank
Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, 95447 Bayreuth, Germany.
Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
ACS Chem Biol. 2023 Dec 15;18(12):2450-2456. doi: 10.1021/acschembio.3c00498. Epub 2023 Nov 10.
Rieske oxygenases (ROs) from natural product biosynthetic pathways are a poorly studied group of enzymes with significant potential as oxidative functionalization biocatalysts. A study on the ROs JerL, JerP, and AmbP from the biosynthetic pathways of jerangolid A and ambruticin VS-3 is described. Their activity was successfully reconstituted using whole-cell bioconversion systems coexpressing the ROs and their respective natural flavin-dependent reductase (FDR) partners. Feeding authentic biosynthetic intermediates and synthetic surrogates to these strains confirmed the involvement of the ROs in hydroxymethylpyrone and dihydropyran formation and revealed crucial information about the RO's substrate specificity. The pronounced dependence of JerL and JerP on the presence of a methylenolether allowed the precise temporal assignment of RO catalysis to the ultimate steps of jerangolid biosynthesis. JerP and AmbP stand out among the biosynthetic ROs studied so far for their ability to catalyze clean tetrahydropyran desaturation without further functionalizing the formed electron-rich double bonds. This work highlights the remarkable ability of ROs to highly selectively oxidize complex molecular scaffolds.
来自天然产物生物合成途径的 Rieske 氧化酶(ROs)是一类研究较少的酶,作为氧化官能团化生物催化剂具有巨大潜力。本文描述了对来自杰兰戈利德 A 和安布罗霉素 VS-3 生物合成途径的 ROs JerL、JerP 和 AmbP 的研究。通过共表达 ROs 及其各自天然黄素依赖性还原酶(FDR)伙伴的全细胞生物转化系统成功重建了它们的活性。向这些菌株投喂真实的生物合成中间体和合成替代物,证实了 ROs 参与羟甲基吡喃和二氢吡喃的形成,并揭示了有关 RO 底物特异性的关键信息。JerL 和 JerP 对亚甲基醚的显著依赖性使得能够将 RO 催化精确地时间分配到杰兰戈利德生物合成的最终步骤。JerP 和 AmbP 在迄今为止研究的生物合成 ROs 中脱颖而出,因为它们能够催化清洁的四氢吡喃去饱和反应,而不会进一步使形成的富电子双键官能团化。这项工作突出了 ROs 对复杂分子支架进行高度选择性氧化的卓越能力。