Suppr超能文献

脊髓损伤后的肌肉痉挛源于运动神经元兴奋性和突触抑制的改变,而不是突触兴奋。

Muscle Spasms after Spinal Cord Injury Stem from Changes in Motoneuron Excitability and Synaptic Inhibition, Not Synaptic Excitation.

机构信息

Departments of Neuroscience.

Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611.

出版信息

J Neurosci. 2024 Jan 3;44(1):e1695232023. doi: 10.1523/JNEUROSCI.1695-23.2023.

Abstract

Muscle spasms are common in chronic spinal cord injury (SCI), posing challenges to rehabilitation and daily activities. Pharmacological management of spasms mostly targets suppression of excitatory inputs, an approach known to hinder motor recovery. To identify better targets, we investigated changes in inhibitory and excitatory synaptic inputs to motoneurons as well as motoneuron excitability in chronic SCI. We induced either a complete or incomplete SCI in adult mice of either sex and divided those with incomplete injury into low or high functional recovery groups. Their sacrocaudal spinal cords were then extracted and used to study plasticity below injury, with tissue from naive animals as a control. Electrical stimulation of the dorsal roots elicited spasm-like activity in preparations of chronic severe SCI but not in the control. To evaluate overall synaptic inhibition activated by sensory stimulation, we measured the rate-dependent depression of spinal root reflexes. We found inhibitory inputs to be impaired in chronic injury models. When synaptic inhibition was blocked pharmacologically, all preparations became clearly spastic, even the control. However, preparations with chronic injuries generated longer spasms than control. We then measured excitatory postsynaptic currents (EPSCs) in motoneurons during sensory-evoked spasms. The data showed no difference in the amplitude of EPSCs or their conductance among animal groups. Nonetheless, we found that motoneuron persistent inward currents activated by the EPSCs were increased in chronic SCI. These findings suggest that changes in motoneuron excitability and synaptic inhibition, rather than excitation, contribute to spasms and are better suited for more effective therapeutic interventions. Neural plasticity following spinal cord injury is crucial for recovery of motor function. Unfortunately, this process is blemished by maladaptive changes that can cause muscle spasms. Pharmacological alleviation of spasms without compromising the recovery of motor function has proven to be challenging. Here, we investigated changes in fundamental spinal mechanisms that can cause spasms post-injury. Our data suggest that the current management strategy for spasms is misdirected toward suppressing excitatory inputs, a mechanism that we found unaltered after injury, which can lead to further motor weakness. Instead, this study shows that more promising approaches might involve restoring synaptic inhibition or modulating motoneuron excitability.

摘要

肌肉痉挛在慢性脊髓损伤(SCI)中很常见,给康复和日常活动带来挑战。痉挛的药物治疗主要针对抑制兴奋性输入,这种方法已知会阻碍运动功能的恢复。为了确定更好的靶点,我们研究了慢性 SCI 中运动神经元的抑制性和兴奋性突触输入以及运动神经元兴奋性的变化。我们在成年雄性和雌性小鼠中诱导完全或不完全 SCI,并将不完全损伤的小鼠分为低或高功能恢复组。然后提取它们的骶尾脊髓,用于研究损伤以下的可塑性,以未受伤的动物组织作为对照。对背根进行电刺激可在慢性严重 SCI 的制剂中诱发痉挛样活动,但在对照中则不会。为了评估感觉刺激激活的总体突触抑制,我们测量了脊神经根反射的速率依赖性抑制。我们发现慢性损伤模型中的抑制性输入受损。当用药物阻断突触抑制时,所有制剂都变得明显痉挛,即使是对照。然而,慢性损伤的制剂产生的痉挛比对照更长。然后,我们在感觉诱发痉挛期间测量运动神经元中的兴奋性突触后电流(EPSC)。数据显示动物组之间 EPSC 的幅度或其电导率没有差异。尽管如此,我们发现慢性 SCI 中运动神经元的 EPSC 激活的持久内向电流增加。这些发现表明,运动神经元兴奋性和突触抑制的变化,而不是兴奋,导致痉挛,更适合更有效的治疗干预。脊髓损伤后的神经可塑性对于运动功能的恢复至关重要。不幸的是,这个过程因适应性变化而受到损害,这些变化会导致肌肉痉挛。在不损害运动功能恢复的情况下减轻痉挛已被证明具有挑战性。在这里,我们研究了可以导致损伤后痉挛的基本脊髓机制的变化。我们的数据表明,目前对痉挛的治疗策略是针对抑制兴奋性输入的,我们发现这种机制在损伤后没有改变,这可能导致进一步的运动无力。相反,这项研究表明,更有前途的方法可能涉及恢复突触抑制或调节运动神经元兴奋性。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验