Indian Institute of Science Education and Research, Pune, 411008, India.
Center for Creative Cognition. SR University, Warangal, 506371, India.
Sci Rep. 2023 Nov 10;13(1):19571. doi: 10.1038/s41598-023-44535-3.
Humans possess an innate ability to visually perceive numerosities, which refers to the cardinality of a set. Numerous studies indicate that the lateral intraparietal cortex (LIP) and other intraparietal sulcus (IPS) regions (region) of the brain contain the neurological substrates responsible for number processing. Existing computational models of number perception often focus on a limited range of numbers and fail to account for important behavioral characteristics like adaptation effects, despite simulating fundamental aspects such as size and distance effects. To address these limitations, our study develops (introduces) a novel computational model of number perception utilizing a network of neurons with self-excitatory and mutual inhibitory properties. Our approach assumes that the mean activation of the network at steady state can encode numerosity by exhibiting a monotonically increasing relationship with the input variable set size. By optimizing the total number of inhibition strengths required, we achieve coverage of the full range of numbers through three distinct intervals: 1 to 4, 5 to 17, and 21 to 50. Remarkably, this division aligns closely with the breakpoints in numerosity perception identified in behavioral studies. Furthermore, our study develops a method for decoding the mean activation into a continuous scale of numbers spanning from 1 to 50. Additionally, we propose a mechanism for dynamically selecting the inhibition strength based on current inputs, enabling the network to operate effectively across an extended (entire) range of numerosities. Our model not only sheds new light on the generation of diverse behavioral phenomena in the brain but also elucidates how continuous visual attributes and adaptation effects influence perceived numerosity.
人类具有直观感知数量的内在能力,即集合的基数。大量研究表明,大脑中的外侧顶内沟(LIP)和其他顶内沟(IPS)区域(区域)包含负责数量处理的神经基质。现有的数量感知计算模型通常集中在有限的数量范围内,并且没有考虑到重要的行为特征,例如适应效应,尽管它们模拟了大小和距离效应等基本方面。为了解决这些限制,我们的研究提出了一种新的数量感知计算模型,该模型利用具有自激和相互抑制特性的神经元网络。我们的方法假设,网络在稳定状态下的平均激活可以通过与输入变量集大小呈单调递增关系来编码数量。通过优化所需的总抑制强度数,我们通过三个不同的区间实现了全数量范围的覆盖:1 到 4、5 到 17 和 21 到 50。值得注意的是,这种划分与行为研究中确定的数量感知断点非常吻合。此外,我们的研究提出了一种将平均激活解码为从 1 到 50 的连续数量刻度的方法。此外,我们提出了一种基于当前输入动态选择抑制强度的机制,使网络能够在扩展的(整个)数量范围内有效运行。我们的模型不仅为大脑中产生的各种行为现象提供了新的视角,还阐明了连续的视觉属性和适应效应如何影响感知数量。