Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Eur Radiol. 2024 Jun;34(6):3840-3848. doi: 10.1007/s00330-023-10432-6. Epub 2023 Nov 11.
To develop and validate a deep learning model for predicting hemorrhagic transformation after endovascular thrombectomy using dual-energy computed tomography (CT).
This was a retrospective study from a prospective registry of acute ischemic stroke. Patients admitted between May 2019 and February 2023 who underwent endovascular thrombectomy for acute anterior circulation occlusions were enrolled. Hemorrhagic transformation was defined using follow-up magnetic resonance imaging or CT. The deep learning model was developed using post-thrombectomy dual-energy CT to predict hemorrhagic transformation within 72 h. Temporal validation was performed with patients who were admitted after July 2022. The deep learning model's performance was compared with a logistic regression model developed from clinical variables using the area under the receiver operating characteristic curve (AUC).
Total of 202 patients (mean age 71.4 years ± 14.5 [standard deviation], 92 men) were included, with 109 (54.0%) patients having hemorrhagic transformation. The deep learning model performed consistently well, showing an average AUC of 0.867 (95% confidence interval [CI], 0.815-0.902) upon five-fold cross validation and AUC of 0.911 (95% CI, 0.774-1.000) with the test dataset. The clinical variable model showed an AUC of 0.775 (95% CI, 0.709-0.842) on the training dataset (p < 0.01) and AUC of 0.634 (95% CI, 0.385-0.883) on the test dataset (p = 0.06).
A deep learning model was developed and validated for prediction of hemorrhagic transformation after endovascular thrombectomy in patients with acute stroke using dual-energy computed tomography.
This study demonstrates that a convolutional neural network (CNN) can be utilized on dual-energy computed tomography (DECT) for the accurate prediction of hemorrhagic transformation after thrombectomy. The CNN achieves high performance without the need for region of interest drawing.
• Iodine leakage on dual-energy CT after thrombectomy may be from blood-brain barrier disruption. • A convolutional neural network on post-thrombectomy dual-energy CT enables individualized prediction of hemorrhagic transformation. • Iodine leakage is an important predictor of hemorrhagic transformation following thrombectomy for ischemic stroke.
利用双能 CT 开发并验证一种预测血管内血栓切除术(EVT)后出血性转化的深度学习模型。
这是一项来自急性缺血性脑卒中前瞻性登记的回顾性研究。纳入 2019 年 5 月至 2023 年 2 月因急性前循环闭塞而行 EVT 的患者。根据随访 MRI 或 CT 诊断出血性转化。使用血栓切除术后的双能 CT 预测 72 小时内的出血性转化,建立深度学习模型。2022 年 7 月以后入院的患者进行时间验证。通过受试者工作特征曲线下面积(AUC)比较基于临床变量的逻辑回归模型和深度学习模型的性能。
共纳入 202 例患者(平均年龄 71.4±14.5 岁[标准差],92 例男性),其中 109 例(54.0%)患者发生出血性转化。深度学习模型表现稳定,五重交叉验证平均 AUC 为 0.867(95%CI,0.815-0.902),测试数据集 AUC 为 0.911(95%CI,0.774-1.000)。基于临床变量的模型在训练数据集的 AUC 为 0.775(95%CI,0.709-0.842)(p<0.01),在测试数据集的 AUC 为 0.634(95%CI,0.385-0.883)(p=0.06)。
利用双能 CT 开发并验证了一种用于预测急性卒中介入治疗后出血性转化的深度学习模型。
本研究表明,卷积神经网络(CNN)可用于双能 CT 对取栓术后出血性转化的准确预测。该 CNN 无需进行感兴趣区域勾画即可实现高性能。
① 取栓后双能 CT 碘漏可能来自血脑屏障破坏。② 血栓切除术后双能 CT 上的卷积神经网络可实现个体化预测出血性转化。③ 碘漏是缺血性卒中取栓后出血性转化的重要预测因素。