Suppr超能文献

糖尿病足溃疡的智能护理管理:计算机视觉和机器学习技术及应用的范围综述

Intelligent Care Management for Diabetic Foot Ulcers: A Scoping Review of Computer Vision and Machine Learning Techniques and Applications.

作者信息

Baseman Cynthia, Fayfman Maya, Schechter Marcos C, Ostadabbas Sarah, Santamarina Gabriel, Ploetz Thomas, Arriaga Rosa I

机构信息

School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA.

Grady Health System, Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA.

出版信息

J Diabetes Sci Technol. 2025 May;19(3):820-829. doi: 10.1177/19322968231213378. Epub 2023 Nov 12.

Abstract

Ten percent of adults in the United States have a diagnosis of diabetes and up to a third of these individuals will develop a diabetic foot ulcer (DFU) in their lifetime. Of those who develop a DFU, a fifth will ultimately require amputation with a mortality rate of up to 70% within five years. The human suffering, economic burden, and disproportionate impact of diabetes on communities of color has led to increasing interest in the use of computer vision (CV) and machine learning (ML) techniques to aid the detection, characterization, monitoring, and even prediction of DFUs. Remote monitoring and automated classification are expected to revolutionize wound care by allowing patients to self-monitor their wound pathology, assist in the remote triaging of patients by clinicians, and allow for more immediate interventions when necessary. This scoping review provides an overview of applicable CV and ML techniques. This includes automated CV methods developed for remote assessment of wound photographs, as well as predictive ML algorithms that leverage heterogeneous data streams. We discuss the benefits of such applications and the role they may play in diabetic foot care moving forward. We highlight both the need for, and possibilities of, computational sensing systems to improve diabetic foot care and bring greater knowledge to patients in need.

摘要

美国10%的成年人被诊断患有糖尿病,其中多达三分之一的人在一生中会患上糖尿病足溃疡(DFU)。在那些患上DFU的人中,五分之一最终将需要截肢,五年内死亡率高达70%。糖尿病给人类带来的痛苦、经济负担以及对有色人种社区造成的不成比例的影响,使得人们越来越关注使用计算机视觉(CV)和机器学习(ML)技术来辅助DFU的检测、特征描述、监测甚至预测。远程监测和自动分类有望彻底改变伤口护理,通过让患者自我监测伤口病理情况,协助临床医生对患者进行远程分诊,并在必要时进行更及时的干预。本综述概述了适用的CV和ML技术。这包括为远程评估伤口照片而开发的自动CV方法,以及利用异构数据流的预测ML算法。我们讨论了此类应用的好处以及它们在未来糖尿病足护理中可能发挥的作用。我们强调了计算传感系统改善糖尿病足护理并为有需要的患者带来更多知识的必要性和可能性。

相似文献

6
Diabetic Foot Ulcers: A Review of Debridement Techniques.糖尿病足溃疡:清创技术综述。
Surg Technol Int. 2024 Jul 15;44:31-35. doi: 10.52198/23.STI.43.WH1718.
9
The role of machine learning in advancing diabetic foot: a review.机器学习在促进糖尿病足方面的作用:综述。
Front Endocrinol (Lausanne). 2024 Apr 29;15:1325434. doi: 10.3389/fendo.2024.1325434. eCollection 2024.

本文引用的文献

8
The DFUC 2020 Dataset: Analysis Towards Diabetic Foot Ulcer Detection.DFUC 2020数据集:糖尿病足溃疡检测分析
touchREV Endocrinol. 2021 Apr;17(1):5-11. doi: 10.17925/EE.2021.17.1.5. Epub 2021 Apr 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验