Suppr超能文献

异常的线粒体动力学导致机械通气引起的膈肌无力。

Aberrant mitochondrial dynamics contributes to diaphragmatic weakness induced by mechanical ventilation.

作者信息

Dridi Haikel, Yehya Marc, Barsotti Robert, Liu Yang, Reiken Steven, Azria Lan, Yuan Qi, Bahlouli Laith, Soni Rajesh Kumar, Marks Andrew R, Lacampagne Alain, Matecki Stefan

机构信息

Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA.

Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA.

出版信息

PNAS Nexus. 2023 Nov 7;2(11):pgad336. doi: 10.1093/pnasnexus/pgad336. eCollection 2023 Nov.

Abstract

In critical care patients, the ""temporary inactivity of the diaphragm caused by mechanical ventilation (MV) triggers a series of events leading to diaphragmatic dysfunction and atrophy, commonly known as ventilator-induced diaphragm dysfunction (VIDD). While mitochondrial dysfunction related to oxidative stress is recognized as a crucial factor in VIDD, the exact molecular mechanism remains poorly understood. In this study, we observe that 6 h of MV triggers aberrant mitochondrial dynamics, resulting in a reduction in mitochondrial size and interaction, associated with increased expression of dynamin-related protein 1 (DRP1). This effect can be prevented by P110, a molecule that inhibits the recruitment of DRP1 to the mitochondrial membrane. Furthermore, isolated mitochondria from the diaphragms of ventilated patients exhibited increased production of reactive oxygen species (ROS). These mitochondrial changes were associated with the rapid oxidation of type 1 ryanodine receptor (RyR1) and a decrease in the stabilizing subunit calstabin 1. Subsequently, we observed that the sarcoplasmic reticulum (SR) in the ventilated diaphragms showed increased calcium leakage and reduced contractile function. Importantly, the mitochondrial fission inhibitor P110 effectively prevented all of these alterations. Taken together, the results of our study illustrate that MV leads, in the diaphragm, to both mitochondrial fragmentation and dysfunction, linked to the up-/down-regulation of 320 proteins, as assessed through global comprehensive quantitative proteomics analysis, primarily associated with mitochondrial function. These outcomes underscore the significance of developing compounds aimed at modulating the balance between mitochondrial fission and fusion as potential interventions to mitigate VIDD in human patients.

摘要

在重症监护患者中,机械通气(MV)导致膈肌暂时失活会引发一系列导致膈肌功能障碍和萎缩的事件,通常称为呼吸机诱导的膈肌功能障碍(VIDD)。虽然与氧化应激相关的线粒体功能障碍被认为是VIDD的关键因素,但其确切分子机制仍知之甚少。在本研究中,我们观察到6小时的MV会引发异常的线粒体动力学,导致线粒体大小和相互作用减少,这与动力相关蛋白1(DRP1)表达增加有关。这种效应可以被P110预防,P110是一种抑制DRP1募集到线粒体膜的分子。此外,从通气患者膈肌中分离出的线粒体表现出活性氧(ROS)产生增加。这些线粒体变化与1型兰尼碱受体(RyR1)的快速氧化和稳定亚基钙稳定蛋白1的减少有关。随后,我们观察到通气膈肌中的肌浆网(SR)显示钙泄漏增加和收缩功能降低。重要的是,线粒体分裂抑制剂P110有效地预防了所有这些改变。综上所述,我们的研究结果表明,MV在膈肌中导致线粒体碎片化和功能障碍,通过全球综合定量蛋白质组学分析评估,这与320种蛋白质的上调/下调有关,主要与线粒体功能相关。这些结果强调了开发旨在调节线粒体分裂和融合平衡的化合物作为减轻人类患者VIDD的潜在干预措施的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db44/10635656/37872f570e76/pgad336f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验