Suppr超能文献

危重症患者中无线粒体功能障碍时的膈肌萎缩与无力

Diaphragm Atrophy and Weakness in the Absence of Mitochondrial Dysfunction in the Critically Ill.

作者信息

van den Berg Marloes, Hooijman Pleuni E, Beishuizen Albertus, de Waard Monique C, Paul Marinus A, Hartemink Koen J, van Hees Hieronymus W H, Lawlor Michael W, Brocca Lorenza, Bottinelli Roberto, Pellegrino Maria A, Stienen Ger J M, Heunks Leo M A, Wüst Rob C I, Ottenheijm Coen A C

机构信息

1 Department of Physiology, Amsterdam Cardiovascular Sciences.

2 Department of Intensive Care, Medisch Spectrum Twente, Enschede, the Netherlands.

出版信息

Am J Respir Crit Care Med. 2017 Dec 15;196(12):1544-1558. doi: 10.1164/rccm.201703-0501OC.

Abstract

RATIONALE

The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency and increases morbidity, duration of hospital stay, and health care costs. The mechanisms underlying diaphragm weakness are unknown, but might include mitochondrial dysfunction and oxidative stress.

OBJECTIVES

We hypothesized that weakness of diaphragm muscle fibers in critically ill patients is accompanied by impaired mitochondrial function and structure, and by increased markers of oxidative stress.

METHODS

To test these hypotheses, we studied contractile force, mitochondrial function, and mitochondrial structure in diaphragm muscle fibers. Fibers were isolated from diaphragm biopsies of 36 mechanically ventilated critically ill patients and compared with those isolated from biopsies of 27 patients with suspected early-stage lung malignancy (control subjects).

MEASUREMENTS AND MAIN RESULTS

Diaphragm muscle fibers from critically ill patients displayed significant atrophy and contractile weakness, but lacked impaired mitochondrial respiration and increased levels of oxidative stress markers. Mitochondrial energy status and morphology were not altered, despite a lower content of fusion proteins.

CONCLUSIONS

Critically ill patients have manifest diaphragm muscle fiber atrophy and weakness in the absence of mitochondrial dysfunction and oxidative stress. Thus, mitochondrial dysfunction and oxidative stress do not play a causative role in the development of atrophy and contractile weakness of the diaphragm in critically ill patients.

摘要

原理

危重症患者膈肌无力的临床意义显著:它会延长呼吸机依赖时间,增加发病率、住院时间和医疗费用。膈肌无力的潜在机制尚不清楚,但可能包括线粒体功能障碍和氧化应激。

目的

我们假设危重症患者膈肌肌纤维无力伴有线粒体功能和结构受损以及氧化应激标志物增加。

方法

为验证这些假设,我们研究了膈肌肌纤维的收缩力、线粒体功能和线粒体结构。从36例机械通气的危重症患者的膈肌活检组织中分离出肌纤维,并与从27例疑似早期肺癌患者(对照受试者)的活检组织中分离出的肌纤维进行比较。

测量指标及主要结果

危重症患者的膈肌肌纤维出现明显萎缩和收缩无力,但线粒体呼吸未受损,氧化应激标志物水平也未升高。尽管融合蛋白含量较低,但线粒体能量状态和形态未改变。

结论

危重症患者存在明显的膈肌肌纤维萎缩和无力,但不存在线粒体功能障碍和氧化应激。因此,线粒体功能障碍和氧化应激在危重症患者膈肌萎缩和收缩无力的发生过程中不发挥因果作用。

相似文献

1
Diaphragm Atrophy and Weakness in the Absence of Mitochondrial Dysfunction in the Critically Ill.
Am J Respir Crit Care Med. 2017 Dec 15;196(12):1544-1558. doi: 10.1164/rccm.201703-0501OC.
2
Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients.
Am J Respir Crit Care Med. 2015 May 15;191(10):1126-38. doi: 10.1164/rccm.201412-2214OC.
3
Positive End-Expiratory Pressure Ventilation Induces Longitudinal Atrophy in Diaphragm Fibers.
Am J Respir Crit Care Med. 2018 Aug 15;198(4):472-485. doi: 10.1164/rccm.201709-1917OC.
4
Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness.
Crit Care Med. 2011 Jul;39(7):1749-59. doi: 10.1097/CCM.0b013e3182190b62.
6
Critical illness-associated diaphragm weakness.
Intensive Care Med. 2017 Oct;43(10):1441-1452. doi: 10.1007/s00134-017-4928-4. Epub 2017 Sep 15.
7
Calpains play an essential role in mechanical ventilation-induced diaphragmatic weakness and mitochondrial dysfunction.
Redox Biol. 2021 Jan;38:101802. doi: 10.1016/j.redox.2020.101802. Epub 2020 Nov 25.
9
Angiotensin 1-7 protects against ventilator-induced diaphragm dysfunction.
Clin Transl Sci. 2021 Jul;14(4):1512-1523. doi: 10.1111/cts.13015. Epub 2021 May 1.
10
Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction.
J Appl Physiol (1985). 2009 Feb;106(2):385-94. doi: 10.1152/japplphysiol.91106.2008. Epub 2008 Oct 30.

引用本文的文献

1
Assessing inspiratory drive and effort in critically ill patients at the bedside.
Crit Care. 2025 Jul 31;29(1):339. doi: 10.1186/s13054-025-05526-0.
2
Diaphragm Muscle: A Pump That Can Not Fail.
Physiol Rev. 2025 Jul 11. doi: 10.1152/physrev.00043.2024.
4
Intraoperative phrenic nerve stimulation to prevent diaphragm fiber weakness during thoracic surgery.
PLoS One. 2025 Apr 1;20(4):e0320936. doi: 10.1371/journal.pone.0320936. eCollection 2025.
6
Super-relaxed myosins contribute to respiratory muscle hibernation in mechanically ventilated patients.
Sci Transl Med. 2024 Jul 31;16(758):eadg3894. doi: 10.1126/scitranslmed.adg3894.
8
Phrenic nerve stimulation to prevent diaphragmatic dysfunction and ventilator-induced lung injury.
Intensive Care Med Exp. 2023 Dec 18;11(1):94. doi: 10.1186/s40635-023-00577-5.
9
Research progress on the pathogenesis and treatment of ventilator-induced diaphragm dysfunction.
Heliyon. 2023 Nov 14;9(11):e22317. doi: 10.1016/j.heliyon.2023.e22317. eCollection 2023 Nov.
10
Aberrant mitochondrial dynamics contributes to diaphragmatic weakness induced by mechanical ventilation.
PNAS Nexus. 2023 Nov 7;2(11):pgad336. doi: 10.1093/pnasnexus/pgad336. eCollection 2023 Nov.

本文引用的文献

5
Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort.
Am J Respir Crit Care Med. 2015 Nov 1;192(9):1080-8. doi: 10.1164/rccm.201503-0620OC.
7
Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm.
J Appl Physiol (1985). 2015 May 1;118(9):1161-71. doi: 10.1152/japplphysiol.00873.2014. Epub 2015 Mar 12.
8
Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients.
Am J Respir Crit Care Med. 2015 May 15;191(10):1126-38. doi: 10.1164/rccm.201412-2214OC.
9
Rapid changes in NADH and flavin autofluorescence in rat cardiac trabeculae reveal large mitochondrial complex II reserve capacity.
J Physiol. 2015 Apr 15;593(8):1829-40. doi: 10.1113/jphysiol.2014.286153. Epub 2015 Mar 13.
10
The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading.
J Physiol. 2015 Apr 15;593(8):1981-95. doi: 10.1113/jphysiol.2014.286740. Epub 2015 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验