Zanelli Serena, Eveilleau Kornelia, Charlton Peter H, Ammi Mehdi, Hallab Magid, El Yacoubi Mounim A
Laboratoire Analyse, Géométrie et Applications, University Sorbonne Nord, Villetaneuse, France.
Axelife, Saint-Nicolas-de-Redon, France.
Front Physiol. 2023 Oct 26;14:1176753. doi: 10.3389/fphys.2023.1176753. eCollection 2023.
Photopletysmography (PPG) is a non-invasive and well known technology that enables the recording of the digital volume pulse (DVP). Although PPG is largely employed in research, several aspects remain unknown. One of these is represented by the lack of information about how many waveform classes best express the variability in shape. In the literature, it is common to classify DVPs into four classes based on the dicrotic notch position. However, when working with real data, labelling waveforms with one of these four classes is no longer straightforward and may be challenging. The correct identification of the DVP shape could enhance the precision and the reliability of the extracted bio markers. In this work we proposed unsupervised machine learning and deep learning approaches to overcome the data labelling limitations. Concretely we performed a K-medoids based clustering that takes as input 1) DVP handcrafted features, 2) similarity matrix computed with the Derivative Dynamic Time Warping and 3) DVP features extracted from a CNN AutoEncoder. All the cited methods have been tested first by imposing four medoids representative of the Dawber classes, and after by automatically searching four clusters. We then searched the optimal number of clusters for each method using silhouette score, the prediction strength and inertia. To validate the proposed approaches we analyse the dissimilarities in the clinical data related to obtained clusters.
光电容积脉搏波描记法(PPG)是一种非侵入性且广为人知的技术,可用于记录数字容积脉搏波(DVP)。尽管PPG在研究中被大量使用,但仍有几个方面尚不清楚。其中之一是缺乏关于多少种波形类别最能表达形状变异性的信息。在文献中,通常根据重搏波切迹位置将DVP分为四类。然而,在处理实际数据时,用这四类中的一类对波形进行标注不再简单直接,可能具有挑战性。正确识别DVP形状可以提高提取的生物标志物的精度和可靠性。在这项工作中,我们提出了无监督机器学习和深度学习方法来克服数据标注的局限性。具体而言,我们进行了基于K-中心点的聚类,其输入包括:1)DVP手工特征;2)使用导数动态时间规整计算的相似性矩阵;3)从卷积神经网络自动编码器提取的DVP特征。首先通过设置代表道伯分类的四个中心点对所有引用的方法进行测试,然后自动搜索四个聚类。然后,我们使用轮廓系数、预测强度和惯性为每种方法搜索最佳聚类数。为了验证所提出的方法,我们分析了与获得的聚类相关的临床数据中的差异。