The School of Electrical Engineering, Shanghai Dianji University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China.
The School of Electrical Engineering, Shanghai Dianji University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China.
Brain Res. 2024 Jan 15;1823:148673. doi: 10.1016/j.brainres.2023.148673. Epub 2023 Nov 11.
Brain-computer interface (BCI) enables the control of external devices using signals from the brain, offering immense potential in assisting individuals with neuromuscular disabilities. Among the different paradigms of BCI systems, the motor imagery (MI) based electroencephalogram (EEG) signal is widely recognized as exceptionally promising. Deep learning (DL) has found extensive applications in the processing of MI signals, wherein convolutional neural networks (CNN) have demonstrated superior performance compared to conventional machine learning (ML) approaches. Nevertheless, challenges related to subject independence and subject dependence persist, while the inherent low signal-to-noise ratio of EEG signals remains a critical aspect that demands attention. Accurately deciphering intentions from EEG signals continues to present a formidable challenge. This paper introduces an advanced end-to-end network that effectively combines the efficient channel attention (ECA) and temporal convolutional network (TCN) components for the classification of motor imagination signals. We incorporated an ECA module prior to feature extraction in order to enhance the extraction of channel-specific features. A compact convolutional network model uses for feature extraction in the middle part. Finally, the time characteristic information is obtained by using TCN. The results show that our network is a lightweight network that is characterized by few parameters and fast speed. Our network achieves an average accuracy of 80.71% on the BCI Competition IV-2a dataset.
脑机接口 (BCI) 使用来自大脑的信号来控制外部设备,为辅助神经肌肉残疾人士提供了巨大的潜力。在 BCI 系统的不同范式中,基于运动想象 (MI) 的脑电图 (EEG) 信号被广泛认为是极具前景的。深度学习 (DL) 在 MI 信号处理中得到了广泛的应用,其中卷积神经网络 (CNN) 相较于传统的机器学习 (ML) 方法表现出了卓越的性能。然而,与个体独立性和个体依赖性相关的挑战仍然存在,而 EEG 信号固有的低信噪比仍然是一个需要关注的关键方面。准确地从 EEG 信号中解码意图仍然是一个艰巨的挑战。本文介绍了一种先进的端到端网络,该网络有效地结合了高效通道注意力 (ECA) 和时间卷积网络 (TCN) 组件,用于运动想象信号的分类。我们在特征提取之前引入了 ECA 模块,以增强通道特定特征的提取。在中间部分使用紧凑的卷积网络模型进行特征提取。最后,通过 TCN 获得时间特征信息。结果表明,我们的网络是一种轻量级网络,具有参数少、速度快的特点。在 BCI 竞赛 IV-2a 数据集上,我们的网络平均准确率达到 80.71%。