School of Systems Science, Beijing Normal University, Beijing, China; International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China.
Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China; Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China.
Comput Biol Med. 2024 Aug;178:108727. doi: 10.1016/j.compbiomed.2024.108727. Epub 2024 Jun 8.
Electroencephalograph (EEG) brain-computer interfaces (BCI) have potential to provide new paradigms for controlling computers and devices. The accuracy of brain pattern classification in EEG BCI is directly affected by the quality of features extracted from EEG signals. Currently, feature extraction heavily relies on prior knowledge to engineer features (for example from specific frequency bands); therefore, better extraction of EEG features is an important research direction. In this work, we propose an end-to-end deep neural network that automatically finds and combines features for motor imagery (MI) based EEG BCI with 4 or more imagery classes (multi-task). First, spectral domain features of EEG signals are learned by compact convolutional neural network (CCNN) layers. Then, gated recurrent unit (GRU) neural network layers automatically learn temporal patterns. Lastly, an attention mechanism dynamically combines (across EEG channels) the extracted spectral-temporal features, reducing redundancy. We test our method using BCI Competition IV-2a and a data set we collected. The average classification accuracy on 4-class BCI Competition IV-2a was 85.1 % ± 6.19 %, comparable to recent work in the field and showing low variability among participants; average classification accuracy on our 6-class data was 64.4 % ± 8.35 %. Our dynamic fusion of spectral-temporal features is end-to-end and has relatively few network parameters, and the experimental results show its effectiveness and potential.
脑电图(EEG)脑机接口(BCI)有可能为控制计算机和设备提供新的范例。EEG BCI 中脑模式分类的准确性直接受到从 EEG 信号中提取的特征质量的影响。目前,特征提取严重依赖于工程特征的先验知识(例如,来自特定频带);因此,更好地提取 EEG 特征是一个重要的研究方向。在这项工作中,我们提出了一种端到端的深度神经网络,该网络可以自动为基于运动想象(MI)的 EEG BCI 找到并组合特征,该 EEG BCI 具有 4 个或更多想象类(多任务)。首先,通过紧凑的卷积神经网络(CCNN)层学习 EEG 信号的谱域特征。然后,门控循环单元(GRU)神经网络层自动学习时间模式。最后,注意力机制动态组合(跨 EEG 通道)提取的谱时特征,减少冗余。我们使用 BCI 竞赛 IV-2a 和我们收集的数据集来测试我们的方法。在 4 类 BCI 竞赛 IV-2a 上的平均分类准确率为 85.1%±6.19%,与该领域的最新研究相当,并且显示出参与者之间的变异性较低;在我们的 6 类数据上的平均分类准确率为 64.4%±8.35%。我们的谱时特征的动态融合是端到端的,并且具有相对较少的网络参数,实验结果表明了其有效性和潜力。