Pugazhendhi Arivalagan, Sharma Ashutosh, Shan Ahamed Tharifkhan, Ramasamy Kesava Priyan, Sabour Amal Abdullah A, A Alshiekheid Maha, Thuy Tgl, Mathimani Thangavel
Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro, 76130, Mexico.
Department of Biotechnology, Microbiology and Bioinformatics, National College, Trichy, 620001, India.
Environ Res. 2024 Jan 15;241:117626. doi: 10.1016/j.envres.2023.117626. Epub 2023 Nov 11.
Cost is the crucial impediment in commercializing microalgal biodiesel. Therefore, cultivating microalgae in cost-effective nutrients reduces the upstream process cost remarkably. Thus, in this study, sugar cane bagasse hydrolysate (SBH) as a lucrative carbon supplement for Chlorococcum sp. and subsequent lipid extraction via an optimized solvent system for biodiesel production was investigated. Characterization of SBH revealed the presence of various monosaccharides and other sugar derivatives such as glucose, fructose, xylose, arabinose, etc. The maximum dry cell weight of 1.7 g/L was estimated in cultures grown in 10 mL SBH. Different solvents such as diethyl ether (DEE), chloroform (CHL), ethyl acetate (ETA), hexane (HEX), methanol (MET), ethanol (ETOH), acetone (ACE) and also combination of solvents (2:1 ratio) such as DEE: MET, CHL: MET, HEX: MET, HEX: ETOH was tested for lipid extraction efficacy. Among solvents used, 12.3% and 18.4% of lipids were extracted using CHL and CHL: MET, respectively, from 10 mL SBH amended cultures. However, the biodiesel yield was found to be similar at about 70.16 % in both SBH and no SBH-added cultures. The fatty acid profile of the biodiesel shows palmitic, oleic, linoleic, linolenic, and arachidonic acid as principal fatty acids. Further, the levels of SFAs, MUFAs, and PUFAs in 10 mL SBH-added cells were 24.67, 12.89, and 34.24%, respectively. Eventually, the fuel properties of Chlorococcum sp. biodiesel, satisfying international biodiesel standards, make the biodiesel a viable diesel substitute in the future.
成本是微藻生物柴油商业化的关键障碍。因此,使用具有成本效益的营养物质培养微藻可显著降低上游加工成本。因此,在本研究中,研究了甘蔗渣水解液(SBH)作为绿球藻属利润丰厚的碳源补充物,并通过优化的溶剂系统进行后续脂质提取以生产生物柴油。SBH的表征显示存在各种单糖和其他糖类衍生物,如葡萄糖、果糖、木糖、阿拉伯糖等。在10mL SBH中培养的藻细胞中,估计最大干重为1.7g/L。测试了不同的溶剂,如乙醚(DEE)、氯仿(CHL)、乙酸乙酯(ETA)、己烷(HEX)、甲醇(MET)、乙醇(ETOH)、丙酮(ACE)以及溶剂组合(2:1比例),如DEE:MET、CHL:MET、HEX:MET、HEX:ETOH的脂质提取效果。在所使用的溶剂中,从添加10mL SBH的培养物中,分别使用CHL和CHL:MET提取了12.3%和18.4%的脂质。然而,发现添加SBH和未添加SBH的培养物中生物柴油产量相似,约为70.16%。生物柴油的脂肪酸谱显示棕榈酸、油酸、亚油酸、亚麻酸和花生四烯酸为主要脂肪酸。此外,添加10mL SBH的细胞中饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)和多不饱和脂肪酸(PUFA)的含量分别为24.67%、12.89%和34.24%。最终,绿球藻属生物柴油的燃料特性符合国际生物柴油标准,使其在未来成为可行的柴油替代品。