Suppr超能文献

肌球蛋白XV是长程侧向抑制过程中信号丝状伪足的负调节因子。

Myosin XV is a negative regulator of signaling filopodia during long-range lateral inhibition.

作者信息

Clements Rhiannon, Smith Tyler, Cowart Luke, Zhumi Jennifer, Sherrod Alan, Cahill Aidan, Hunter Ginger L

机构信息

Department of Biology, Clarkson University, Potsdam, NY, 13699, United States.

Department of Biology, Clarkson University, Potsdam, NY, 13699, United States.

出版信息

Dev Biol. 2024 Jan;505:110-121. doi: 10.1016/j.ydbio.2023.11.002. Epub 2023 Nov 11.

Abstract

The self-organization of cells during development is essential for the formation of healthy tissues and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV isoforms are present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.

摘要

细胞在发育过程中的自我组织对于健康组织的形成至关重要,并且需要在局部尺度上协调细胞活动。胞突运输丝,即信号丝状伪足,是基于肌动蛋白的动态细胞突起,使细胞能够进行远距离的接触介导信号传导。虽然信号丝状伪足已被证明在发育过程中支持多种信号传导模式,但对于这些突起如何被调节却知之甚少。我们研究了正端定向的非常规MyTH4-FERM肌球蛋白在果蝇黑腹果蝇背胸感觉刚毛模式形成过程中调节信号丝状伪足的作用。我们发现肌球蛋白XV是调节信号丝状伪足动力学所必需的,因此,在整个模式形成上皮中更广泛地进行侧向抑制也需要它。我们发现肌球蛋白XV是限制刚毛前体细胞产生的信号丝状伪足的长度和数量所必需的。由于肌球蛋白XV缺失而具有额外且更长信号丝状伪足的细胞,由于其长度上Delta配体和Notch受体水平的改变,不具备信号传导能力。我们得出结论,肌球蛋白XV起到负向调节信号丝状伪足的作用,同时促进信号丝状伪足参与长距离Notch信号传导的能力。由于肌球蛋白XV异构体存在于多个脊椎动物和无脊椎动物系统中,这可能对其他长距离信号传导机制具有重要意义。

相似文献

1
Myosin XV is a negative regulator of signaling filopodia during long-range lateral inhibition.
Dev Biol. 2024 Jan;505:110-121. doi: 10.1016/j.ydbio.2023.11.002. Epub 2023 Nov 11.
2
Myosin XV is a negative regulator of signaling filopodia during long-range lateral inhibition.
bioRxiv. 2023 Jul 7:2023.07.07.547992. doi: 10.1101/2023.07.07.547992.
3
Scabrous is distributed via signaling filopodia to modulate Notch response during bristle patterning in Drosophila.
PLoS One. 2023 Sep 20;18(9):e0291409. doi: 10.1371/journal.pone.0291409. eCollection 2023.
4
MyTH4-FERM myosins have an ancient and conserved role in filopod formation.
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):E8059-E8068. doi: 10.1073/pnas.1615392113. Epub 2016 Nov 23.
5
Sisyphus, the Drosophila myosin XV homolog, traffics within filopodia transporting key sensory and adhesion cargos.
Development. 2008 Jan;135(1):53-63. doi: 10.1242/dev.011437. Epub 2007 Nov 28.
6
Myosin-X: a MyTH-FERM myosin at the tips of filopodia.
J Cell Sci. 2011 Nov 15;124(Pt 22):3733-41. doi: 10.1242/jcs.023549.
7
Optimized filopodia formation requires myosin tail domain cooperation.
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22196-22204. doi: 10.1073/pnas.1901527116. Epub 2019 Oct 14.
8
Myosin-X is a molecular motor that functions in filopodia formation.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12411-6. doi: 10.1073/pnas.0602443103. Epub 2006 Aug 7.
9
VASP-mediated actin dynamics activate and recruit a filopodia myosin.
Elife. 2021 May 27;10:e68082. doi: 10.7554/eLife.68082.
10
MyTH4-FERM myosins in the assembly and maintenance of actin-based protrusions.
Curr Opin Cell Biol. 2017 Feb;44:68-78. doi: 10.1016/j.ceb.2016.10.002. Epub 2016 Nov 9.

本文引用的文献

1
Protrusion growth driven by myosin-generated force.
Dev Cell. 2023 Jan 9;58(1):18-33.e6. doi: 10.1016/j.devcel.2022.12.001.
2
Myosin motors in sensory hair bundle assembly.
Curr Opin Cell Biol. 2022 Dec;79:102132. doi: 10.1016/j.ceb.2022.102132. Epub 2022 Oct 17.
3
Structural basis for tunable control of actin dynamics by myosin-15 in mechanosensory stereocilia.
Sci Adv. 2022 Jul 22;8(29):eabl4733. doi: 10.1126/sciadv.abl4733. Epub 2022 Jul 20.
4
Talking to your neighbors across scales: Long-distance Notch signaling during patterning.
Curr Top Dev Biol. 2022;150:299-334. doi: 10.1016/bs.ctdb.2022.04.002. Epub 2022 May 31.
6
Improving the understanding of cytoneme-mediated morphogen gradients by in silico modeling.
PLoS Comput Biol. 2021 Aug 3;17(8):e1009245. doi: 10.1371/journal.pcbi.1009245. eCollection 2021 Aug.
7
Propagation of F-actin disassembly via Myosin15-Mical interactions.
Sci Adv. 2021 May 12;7(20). doi: 10.1126/sciadv.abg0147. Print 2021 May.
8
Generation of extracellular morphogen gradients: the case for diffusion.
Nat Rev Genet. 2021 Jun;22(6):393-411. doi: 10.1038/s41576-021-00342-y. Epub 2021 Mar 25.
10
Active perception during angiogenesis: filopodia speed up Notch selection of tip cells .
Philos Trans R Soc Lond B Biol Sci. 2021 Mar 29;376(1821):20190753. doi: 10.1098/rstb.2019.0753. Epub 2021 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验