Interdisciplinary Research Centre HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany.
Institute of Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany.
Anal Chem. 2023 Nov 28;95(47):17292-17299. doi: 10.1021/acs.analchem.3c03428. Epub 2023 Nov 13.
Many biological processes depend on the interactions between proteins and lipids. Accordingly, the analysis of protein-lipid complexes has become increasingly important. Native mass spectrometry is often used to identify and characterize specific protein-lipid interactions. However, it requires the transfer of the analytes into the gas phase, where electrostatic interactions are enhanced and hydrophobic interactions do not exist. Accordingly, the question remains whether interactions that are observed in the gas phase accurately reflect interactions that are formed in solution. Here, we systematically explore noncovalent interactions between the antimicrobial peptide LL-37 and glycerophospholipids containing different headgroups or varying in fatty acyl chain length. We observe differences in peak intensities for different peptide-lipid complexes, as well as their relative binding strength in the gas phase. Accordingly, we found that ion intensities and gas-phase stability correlate well for complexes formed by electrostatic interactions. Probing hydrophobic interactions by varying the length of fatty acyl chains, we detected differences in ion intensities based on hydrophobic interactions formed in solution. The relative binding strength of these peptide-lipid complexes revealed only minor differences originating from van der Waals interactions and different binding modes of lipid headgroups in solution. In summary, our results demonstrate that hydrophobic interactions are reflected by ion intensities, while electrostatic interactions, including van der Waals interactions, determine the gas-phase stability of complexes.
许多生物过程依赖于蛋白质和脂质之间的相互作用。因此,蛋白质-脂质复合物的分析变得越来越重要。天然质谱法常用于鉴定和描述特定的蛋白质-脂质相互作用。然而,它需要将分析物转移到气相中,在气相中静电相互作用增强,而不存在疏水相互作用。因此,问题仍然是在气相中观察到的相互作用是否准确反映了在溶液中形成的相互作用。在这里,我们系统地研究了抗菌肽 LL-37 与含有不同头基或不同脂肪酸链长的甘油磷脂之间的非共价相互作用。我们观察到不同肽-脂质复合物的峰强度以及它们在气相中的相对结合强度存在差异。因此,我们发现对于静电相互作用形成的复合物,离子强度和气相稳定性具有很好的相关性。通过改变脂肪酸链的长度来探测疏水相互作用,我们根据溶液中形成的疏水相互作用检测到离子强度的差异。这些肽-脂质复合物的相对结合强度仅显示出源自范德华相互作用和溶液中脂质头基不同结合模式的微小差异。总之,我们的结果表明,疏水相互作用可以通过离子强度反映出来,而静电相互作用,包括范德华相互作用,决定了复合物在气相中的稳定性。