Suppr超能文献

带冷却功能的锁定式红外热成像技术用于复合材料检测

Lock-In Thermography with Cooling for the Inspection of Composite Materials.

作者信息

Łukaszuk Ryszard Dymitr, Marques Rafael Monteiro, Chady Tomasz

机构信息

Doctoral School, West Pomeranian University of Technology, 70-313 Szczecin, Poland.

Independent Researcher, Faculty of Electrical Engineering, West Pomeranian University of Technology, 70-313 Szczecin, Poland.

出版信息

Materials (Basel). 2023 Oct 28;16(21):6924. doi: 10.3390/ma16216924.

Abstract

This paper presents the development of the lock-in thermography system with an additional cooling system. System feasibility is tested by investigating a square-shaped glass fiber-reinforced polymer (GFRP) with artificially made outer flaws. The influence of heating mode and sinusoidal excitation period on the defect detectability is considered. Thus, the experiment is split into two modes: the sample is solely heated in the first mode or simultaneously heated and cooled in the second. In each mode, the temperature measurement is performed first with a shorter excitation signal period and second with a longer one. The signal-to-noise ratio (SNR) is used to assess defect detection quantitatively. The comparative analysis shows that employing a mixed heating-cooling mode improves the SNR compared to the conventional heating mode. The further enhancement of the SNR is obtained by extending the excitation period. The combination of simultaneous heating and cooling with longer periods of the excitation signal allows for the best SNR values for the most detected defects.

摘要

本文介绍了带有附加冷却系统的锁相热成像系统的开发。通过研究具有人工制造外部缺陷的方形玻璃纤维增​​强聚合物(GFRP)来测试系统的可行性。考虑了加热方式和正弦激励周期对缺陷可检测性的影响。因此,实验分为两种模式:在第一种模式下仅对样品进行加热,在第二种模式下对样品同时进行加热和冷却。在每种模式下,首先使用较短的激励信号周期进行温度测量,其次使用较长的激励信号周期进行温度测量。信噪比(SNR)用于定量评估缺陷检测。对比分析表明,与传统加热模式相比,采用混合加热-冷却模式可提高信噪比。通过延长激励周期可进一步提高信噪比。同时加热和冷却与较长激励信号周期的组合可为大多数检测到的缺陷提供最佳信噪比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42df/10648542/c72a1f7d1cbf/materials-16-06924-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验