Tan Xiaopeng, Zhu Mingqiao, Liu Wanli
School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411100, China.
Hunan Wisdom Construction Assembly Passive House Engineering Technology Research Center, Xiangtan 411100, China.
Materials (Basel). 2023 Oct 29;16(21):6941. doi: 10.3390/ma16216941.
To investigate the impact of the filament winding angle of glass-fiber reinforced plastic (GFRP) on the seismic behavior of GFRP tube ultra-high performance concrete (UHPC) composite columns, this study designs two types of GFRP tube UHPC composite columns. Quasi-static tests are conducted on the specimens subjected to horizontal reciprocating load and axial force, and the skeleton curve characteristics of the structure are analyzed. Furthermore, a finite element analysis model of the composite column is established to explore the effects of the diameter-thickness ratio, circumferential elastic modulus of confined tubes, and tensile strength of concrete on the seismic performance of the composite column. The analysis includes a review of the skeleton curve, energy dissipation capacity, and stiffness degradation of the structure under different designs. The results indicate that the use of GFRP tubes effectively enhances the seismic performance of UHPC columns. The failure mode, peak load, and peak displacement of the composite columns are improved. The finite element analysis results are in good agreement with the experimental results, validating the effectiveness of the analysis model. Extended analysis reveals that the bearing capacity of the specimen increases while the energy dissipation capacity decreases with a decrease in the diameter-thickness ratio and an increase in the circumferential elastic modulus. Although the tensile strength of concrete has some influence on the seismic performance of the specimen, its effect is relatively small. Through regression analysis, a formula for shear capacity suitable for GFRP tube UHPC composite columns is proposed. This formula provides a theoretical reference for the design and engineering practice of GFRP tube UHPC composite columns.
为研究玻璃纤维增强塑料(GFRP)缠绕角度对GFRP管超高强混凝土(UHPC)组合柱抗震性能的影响,本研究设计了两种类型的GFRP管UHPC组合柱。对承受水平往复荷载和轴向力的试件进行拟静力试验,并分析结构的骨架曲线特性。此外,建立了组合柱的有限元分析模型,以探讨直径厚度比、约束管环向弹性模量和混凝土抗拉强度对组合柱抗震性能的影响。分析内容包括不同设计下结构的骨架曲线、耗能能力和刚度退化情况。结果表明,使用GFRP管有效提高了UHPC柱的抗震性能。组合柱的破坏模式、峰值荷载和峰值位移均得到改善。有限元分析结果与试验结果吻合良好,验证了分析模型的有效性。进一步分析表明,随着直径厚度比减小和环向弹性模量增大,试件的承载力增加而耗能能力降低。虽然混凝土抗拉强度对试件的抗震性能有一定影响,但其影响相对较小。通过回归分析,提出了适用于GFRP管UHPC组合柱抗剪承载力的计算公式。该公式为GFRP管UHPC组合柱的设计和工程实践提供了理论参考。