Suppr超能文献

轴向压缩下玻璃纤维增强塑料(GFRP)增强混凝土柱的人工神经网络(ANN)和有限元(FEM)模型

Artificial Neural Network (ANN) and Finite Element (FEM) Models for GFRP-Reinforced Concrete Columns under Axial Compression.

作者信息

Isleem Haytham F, Tayeh Bassam A, Alaloul Wesam Salah, Musarat Muhammad Ali, Raza Ali

机构信息

Department of Civil Engineering, Tsinghua University, Beijing 180004, China.

Department of Civil Engineering, Faculty of Engineering, Islamic University of Gaza, Gaza P.O. Box 108, Palestine.

出版信息

Materials (Basel). 2021 Nov 25;14(23):7172. doi: 10.3390/ma14237172.

Abstract

In reinforced concrete structures, the fiber-reinforced polymer (FRP) as reinforcing rebars have been widely used. The use of GFRP (glass fiber-reinforced polymer) bars to solve the steel reinforcement corrosion problem in various concrete structures is now well documented in many research studies. Hollow concrete-core columns (HCCs) are used to make a lightweight structure and reduce its cost. However, the use of FRP bars in HCCs has not yet gained an adequate level of confidence due to the lack of laboratory tests and standard design guidelines. Therefore, the present paper numerically and empirically explores the axial compressive behavior of GFRP-reinforced hollow concrete-core columns (HCCs). A total of 60 HCCs were simulated in the current version of Finite Element Analysis (FEA) ABAQUS. The reference finite element model (FEM) was built for a wide range of test variables of HCCs based on 17 specimens experimentally tested by the same group of researchers. All columns of 250 mm outer diameter, 0, 40, 45, 65, 90, 120 mm circular inner-hole diameter, and a height of 1000 mm were built and simulated. The effects of other parameters cover unconfined concrete strength from 21.2 to 44 MPa, the internal confinement (center to center spiral spacing = 50, 100, and 150 mm), and the amount of longitudinal GFRP bars ( = 1.78-4.02%). The complex column response was defined by the concrete damaged plastic model (CDPM) and the behavior of the GFRP reinforcement was modeled as a linear-elastic behavior up to failure. The proposed FEM showed an excellent agreement with the tested load-strain responses. Based on the database obtained from the ABAQUS and the laboratory test, different empirical formulas and artificial neural network (ANN) models were further proposed for predicting the softening and hardening behavior of GFRP-RC HCCs.

摘要

在钢筋混凝土结构中,纤维增强聚合物(FRP)作为钢筋已被广泛应用。许多研究表明,使用玻璃纤维增强聚合物(GFRP)筋来解决各种混凝土结构中的钢筋腐蚀问题已有充分记载。空心混凝土芯柱(HCC)用于构建轻质结构并降低成本。然而,由于缺乏实验室测试和标准设计指南,在HCC中使用FRP筋尚未获得足够的信心。因此,本文通过数值模拟和试验研究了GFRP增强空心混凝土芯柱(HCC)的轴向抗压性能。在当前版本的有限元分析(FEA)软件ABAQUS中总共模拟了60个HCC。基于同一组研究人员试验的17个试件,针对HCC的广泛试验变量建立了参考有限元模型(FEM)。构建并模拟了所有外径为250mm、圆形内孔直径为0、40、45、65、90、120mm且高度为1000mm的柱体。其他参数的影响包括无约束混凝土强度在21.2至44MPa之间、内部约束(螺距中心距=50、100和150mm)以及纵向GFRP筋的用量(=1.78 - 4.02%)。采用混凝土损伤塑性模型(CDPM)定义复杂的柱体响应,并将GFRP钢筋的行为模拟为直至破坏的线弹性行为。所提出的有限元模型与试验荷载-应变响应显示出极好的一致性。基于从ABAQUS和实验室试验获得的数据库,进一步提出了不同的经验公式和人工神经网络(ANN)模型,用于预测GFRP - RC HCC的软化和硬化行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62e8/8658667/cc9a41da0839/materials-14-07172-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验